精英家教网 > 高中数学 > 题目详情
8.直线l经过点(2,1)且与直线m:2x+y+1=0平行,则直线l的方程为2x+y-5=0.

分析 设出直线方程,利用已知条件代入点的坐标求解即可.

解答 解:直线l经过点(2,1)且与直线m:2x+y+1=0平行,
设直线l的方程2x+y+t=0,
则:2×2+1+t=0,解得t=-5.
则直线l的方程为:2x+y-5=0.
故答案为:2x+y-5=0.

点评 本题考查直线方程的求法,直线与直线平行条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列求导运算正确的是(  )
A.[(3-x2)(1+x)]′=3x2-2x+6B.(sinx-cosx)′=cosx-sinx
C.$(x\sqrt{x}-{e^x})'=\frac{3}{2}x-{e^x}$D.$(\frac{1-x}{1+x})'=-\frac{2}{{{{(1+x)}^2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下面是一个2×2的列联表:
y1y2总计
x1a2173
x222527
合计54b100
则表中a,b的值依次为(  )
A.44,54B.52,54C.54,46D.52,46

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=x3-a的图象不经过第二象限,则实数a的取值范围是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.对于函数f(x),若存在区间M=[a,b](a<b),使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的一个“稳定区间”.给出下列3个函数:
①f(x)=ex
②f(x)=lnx+1;
③f(x)=x3
其中不存在“稳定区间”的函数有③(填上正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在一次绘画展览中,组委会要求把3幅国画,2幅油画,一幅水墨画挂在一起,并且要求同种画必须相邻,3幅国画必须挂在中间,有多少种挂法?(  )
A.24种B.12种C.2种D.6种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥S-ABCD的底面ABCD是正方形,SA⊥平面ABCD,SA=$\sqrt{2}$AB,点E在棱SC上.
(Ⅰ)若SA∥平面BDE,求证:AC⊥平面BDE;
(Ⅱ)在(Ⅰ)的条件下,求AD与平面SCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xoy中,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C1的极坐标方程为ρ=2(cosθ+sinθ),曲线C2的参数方程为$\left\{\begin{array}{l}{x=a+4t}\\{y=4t}\end{array}\right.$(t为参数,a∈R).
(1)写出曲线C1的直角坐标方程;
(2)若曲线C1与C2有两个不同的交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=$\frac{1}{3}$CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,求BF的长.

查看答案和解析>>

同步练习册答案