精英家教网 > 高中数学 > 题目详情
18.下列求导运算正确的是(  )
A.[(3-x2)(1+x)]′=3x2-2x+6B.(sinx-cosx)′=cosx-sinx
C.$(x\sqrt{x}-{e^x})'=\frac{3}{2}x-{e^x}$D.$(\frac{1-x}{1+x})'=-\frac{2}{{{{(1+x)}^2}}}$

分析 根据导数的运算法则和运算公式进行判断即可.

解答 解:A.[(3-x2)(1+x)]′=(-2x)(1+x)+(3-x2)=-3x2-2x+3,故A错误,
B.(sinx-cosx)′=cosx+sinx,故B错误,
C.(x$\sqrt{x}$-ex)′=$\frac{3}{2}\sqrt{x}$-ex,故C错误,
D.($\frac{1-x}{1+x}$)′=$\frac{-(1+x)-(1-x)}{(1+x)^{2}}$=$-\frac{2}{(1+x)^{2}}$,故D正确,
故选:D.

点评 本题主要考查导数的计算,要求熟练掌握掌握常见函数的导数公式,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.方程x2+2kx+k2-2k+1=0的两个实数根x1,x2满足x12+x22=4,则k的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$=2tanα恒成立,则角α可能在的象限是(  )
A.第一象限B.第四象限C.第一、四象限D.第二、三象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.当0<k<1时,函数f(x)=|1-x2|-(kx-k)零点个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{3{x}^{2}-6x+1,x>0}\end{array}\right.$.
(Ⅰ)画出函数f(x)的图象,结合图象,写出函数f(x)的单调区间;
(Ⅱ)结合所画图形,讨论直线y=m与函数f(x)的图象的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高三(1)班全体女生的人数;
(2)求分数在[80,90)之间的女生人数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)若要从分数在[80,100)之间的试卷中任取两份分析女学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100)之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一直线过点P(1,1)且其倾斜角是直线y=$\frac{1}{{\sqrt{3}}}$x的倾斜角的2倍,则此直线的方程为:$\sqrt{3}$x-y-$\sqrt{3}$+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l的方程为t(x-1)+2x+y+1=0  (t∈R)
(1)若直线l在两坐标轴上的截距相等,求直线l的方程;
(2)若直线l不经过第二象限,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线l经过点(2,1)且与直线m:2x+y+1=0平行,则直线l的方程为2x+y-5=0.

查看答案和解析>>

同步练习册答案