精英家教网 > 高中数学 > 题目详情
已知奇函数f(x)是定义在(-1,1)上的增函数,如果f(1-a)+f(1-a2)<0,则实数a的取值范围是
 
分析:先根据奇函数将f(1-a)+f(1-a2)<0化简一下,再根据f(x)是定义在(-1,1)上的增函数,建立不等式组进行求解即可.
解答:解:∵f(x)是奇函数
∴f(1-a)<-f(1-a2)=f(a2-1)
∵f(x)是定义在(-1,1)上的增函数
-1<1-a<1
-1<a2-1<1
1-a<a2-1
解得:1<a<
2

故答案为1<a<
2
点评:本题主要考查了函数单调性的应用,以及函数的奇偶性的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知奇函数f(x)是定义在R上的增函数,数列xn是一个公差为2的等差数列,满足f(x8)+f(x9)+f(x10)+f(x11)=0,则x2011的值等于
4003

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)是定义在[-1,1]上的增函数,则不等式f(x-1)+f(1-x2)<0的解集为
(1,
2
]
(1,
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)是定义在[-1,1]上的增函数,且f(x-1)+f(3x-2)<0,则x的取值范围为
1
3
≤x<
3
4
1
3
≤x<
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)是定义在R上的增函数,且f(x-1)+f(3x-1)<0,则x的取值范围为
x<
1
2
x<
1
2

查看答案和解析>>

同步练习册答案