精英家教网 > 高中数学 > 题目详情
8.下列函数中,在区间(0,+∞)上单调递增的是(  )
A.y=-x2B.y=${log}_{\frac{1}{2}}$xC.y=($\frac{1}{2}$)xD.y=x-$\frac{1}{x}$

分析 根据二次函数,对数函数,指数函数的单调性,结合增-减=增的原则,可得答案.

解答 解:函数y=-x2在区间(0,+∞)上单调递减;
函数y=${log}_{\frac{1}{2}}$x在区间(0,+∞)上单调递减;
函数y=($\frac{1}{2}$)x在区间(0,+∞)上单调递减;
函数y=x在区间(0,+∞)上单调递增,函数y=$\frac{1}{x}$在区间(0,+∞)上单调递减,
故函数y=x-$\frac{1}{x}$在区间(0,+∞)上单调递增;
故选:D

点评 本题考查的知识点是二次函数,对数函数,指数函数的单调性,单调性的性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=|tan($\frac{1}{2}$x-$\frac{π}{6}$)|,则下列说法正确的是(  )
A.f(x)的周期是$\frac{π}{2}$
B.f(x)的值域是{y|y∈R,且y≠0}
C.直线x=$\frac{5π}{3}$是函数f(x)图象的一条对称轴
D.f(x)的单调递减区间是(2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知-1≤a≤1,-1≤b≤1,则函数y=lg(x2+2ax+b)的定义域为全体实数R的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等比数列{an}的前n项和为Sn,若a2=$\frac{1}{2}$,$\frac{S_6}{S_2}$=21,则a8=(  )
A.32B.32或-32C.64D.64或-64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,则输出的结果是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“x2-5x-6=0”是“x=-1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.即不充分也不必要件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为调查某地年龄与高血压的关系,用简单随机抽样法从该地区年龄在20~60的人群中抽取200人测量血压,结果如表:
高血压非高血压总计
年龄20到3912c100
年龄40到60b52100
总计60a200
(1)计算表中的 a、b、c值;是否有99.9%的把握认为高血压与年龄有关?并说明理由.
(2)现从这60名高血压患者中按年龄采用分层抽样的方法抽取10人,再从这人10中随机抽取2人,记年龄在20到39的人数为随机变量X,求X的分布列与期望.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“?x0∈R,x02=kx0+b(k,b为常数)”的否定是(  )
A.?x∈R,x2≠kx+b(k,b为常数)B.?x0∈R,x02<kx0+b(k,b为常数)
C.?x∈R,x2≥kx+b(k,b为常数)D.?x0∈R,x02>kx0+b(k,b为常数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设变量x,y满足不等式组$\left\{\begin{array}{l}x+y-4≤0\\ x-3y+3≤0\\ x≥1\end{array}\right.$,若z=x-y-4,则|z|的取值范围是[$\frac{7}{2}$,6] .

查看答案和解析>>

同步练习册答案