精英家教网 > 高中数学 > 题目详情
7.已知直线ax+by=1经过点(1,2),则2a+4b的最小值为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.4D.4$\sqrt{2}$

分析 直线ax+by=1经过点(1,2),可得:a+2b=1.再利用基本不等式的性质、指数的运算性质即可得出.

解答 解:∵直线ax+by=1经过点(1,2),
∴a+2b=1.
则2a+4b≥$2\sqrt{{2}^{a}•{2}^{2b}}$=$2\sqrt{{2}^{a+2b}}$=2$\sqrt{2}$,当且仅当$a=2b=\frac{1}{2}$时取等号.
故选:B.

点评 本题考查了点与直线的关系、基本不等式的性质、指数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥P-ABCD的底面是矩形,△PAD为等边三角形,且平面PAD⊥平面ABCD,E,F分别为PC和BD的中点.
(1)证明:EF∥平面PAD;
(2)证明:平面PDC⊥平面PAD;
(3)若AB=1,AD=2,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}中,a1=1,an+1=$\left\{\begin{array}{l}{\frac{1}{3}{a}_{n}+n-1,n为奇数}\\{{a}_{n}-3n,n为偶数}\end{array}\right.$,则使数列{an}的前n项和Sn>0的n的值为1和2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆锥的母线长为10,母线与轴的夹角为30°,则该圆锥的侧面积为50π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z1=2+2i,z2=1-3i(i为虚数单位),那么复数$\frac{{{z}_{1}}^{2}}{{z}_{2}}$所对应的点在复平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.(1-x24($\frac{x+1}{x}$)5的展开式中$\frac{1}{x}$的系数为(  )
A.5B.11C.-21D.-29

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+2≥0}\\{x-y+3≥0}\\{2x+y-3≤0}\end{array}\right.$,则目标函数z=x+2y的最大值为(  )
A.0B.3C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=$\frac{x-2}{2x-1}$(x≠$\frac{1}{2}$)的反函数是(  )
A.y=$\frac{2x-1}{x+2}$(x≠-2)B.y=$\frac{x-2}{2x-1}$(x≠$\frac{1}{2}$)C.y=$\frac{x+1}{2x-1}$(x≠$\frac{1}{2}$)D.y=$\frac{2x-1}{x-2}$(x≠2)

查看答案和解析>>

同步练习册答案