| A. | -540 | B. | -270 | C. | 540 | D. | 270 |
分析 先求出a的值,再利用二项展开式的通项公式求得该展开式中的常数项.
解答 解:${(a\root{3}{x}-\frac{1}{{\sqrt{x}}})^5}$展开式中各项系数的和为32,
令x=1,可得(a-1)5 =32,∴a=3,
故 ($3\root{3}{x}$-$\frac{1}{\sqrt{x}}$)5 的展开式的通项公式为Tr+1=C5r(-1)r•35-r•x${\;}^{\frac{5-r}{3}-\frac{r}{2}}$
令$\frac{5-r}{3}$-$\frac{r}{2}$=0,可得r=2,故该展开式中的常数项是C52(-1)2•35-2=270,
故选:D.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 11 | C. | 12 | D. | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{5}{4}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com