精英家教网 > 高中数学 > 题目详情
15.若抛物线y2=2px的焦点与双曲线$\frac{{x}^{2}}{3}$-y2=1的右焦点重合,则该抛物线的准线方程为x=-2.

分析 求出双曲线的右焦点为F(2,0),该点也是抛物线的焦点,可得$\frac{p}{2}$=2,即可得到结果.

解答 解:∵双曲线的标准形式为:$\frac{{x}^{2}}{3}$-y2=1,
∴c=2,双曲线的右焦点为F(2,0),
∵抛物线y2=2px(p>0)的焦点与双曲线$\frac{{x}^{2}}{3}$-y2=1的右焦点重合,
∴$\frac{p}{2}$=2,可得该抛物线的准线方程为x=-2.
故答案为:x=-2.

点评 本题给出抛物线与双曲线右焦点重合,求抛物线的焦参数的值,着重考查了双曲线的标准方程和抛物线简单几何性质等知识点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{|log_2x|,0<x<2}\\{cos(\frac{π}{2}-\frac{π}{4}x),2≤x≤10}\end{array}\right.$,若存在实数x1,x2,x3,x4满足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则x1x2(x3-1)(x4-1)的取值范围是(  )
A.B.(9,21)C.(21,25)D.(9,25)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示,网格纸上小正方形的边长为1cm,粗实线为某空间几何体的三视图,则该几何体的体积为(  ) 
A.2 cm3B.4 cm3C.6 cm3D.8 cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知圆C:(x-1)2+(y-2)2=2截y轴所得线段与截直线y=2x+b所得线段的长度相等,则b=(  )
A.$-\sqrt{6}$B.±$\sqrt{6}$C.$-\sqrt{5}$D.±$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某工广生产一种无盖冰激凌纸筒为圆柱形,现一客户定制该圆柱纸筒,并要求该圆柱纸筒的容积为27πcm3,设该圆柱纸筒的底面半径为r,则工厂要求制作该圆柱纸筒的材料最省时,r的值为3cm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点(x,y)满足(x-1)2+(y-1)2≤1,则满足(y-x)(y-$\frac{1}{x}$)≥0的概率为(  )
A.$\frac{π}{2}$B.$\frac{4}{7}$πC.$\frac{1}{2}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.直线y=ax+1与双曲线3x2-y2=1相交于A、B两点.
(1)当a为何值时,以AB为直径的圆过原点?
(2)当a为何值时,A,B两点分别在双曲线的两支上?当a为何值时,A,B两点在双曲线的同一支上?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在下图平行四边形?OABC中,两对角线OB与AC相交于点D,若$\overrightarrow{OA}$=(3,1),$\overrightarrow{OC}$=(1,3),则向量$\overrightarrow{OD}$的坐标是(2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若等比数列{an}的公比为q,n为偶数,则数列的第$\frac{n}{2}$项为(  )
A.a1q${\;}^{\frac{n}{2}}$B.a1q${\;}^{\frac{n-2}{2}}$C.a1q${\;}^{\frac{n-1}{2}}$D.a1q${\;}^{\frac{n}{2}+1}$

查看答案和解析>>

同步练习册答案