精英家教网 > 高中数学 > 题目详情
5.若等比数列{an}的公比为q,n为偶数,则数列的第$\frac{n}{2}$项为(  )
A.a1q${\;}^{\frac{n}{2}}$B.a1q${\;}^{\frac{n-2}{2}}$C.a1q${\;}^{\frac{n-1}{2}}$D.a1q${\;}^{\frac{n}{2}+1}$

分析 利用等比数列的通项公式即可得出.

解答 解:${a}_{\frac{n}{2}}$=${a}_{1}×{q}^{\frac{n}{2}-1}$=${a}_{1}{q}^{\frac{n-2}{2}}$.
故选:B.

点评 本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若抛物线y2=2px的焦点与双曲线$\frac{{x}^{2}}{3}$-y2=1的右焦点重合,则该抛物线的准线方程为x=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=(sinx-cosx)sinx,x∈R,则f(x)的最小正周期是(  )
A.πB.C.$\frac{π}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.Sn表示数列{an}(n≥1)的前n项和,已知a1=1,且?n≥1,Sn+1=4an+2,则a2013等于(  )
A.3019•22012B.3019•22013C.3018•22012D.以上答案均不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在递增的等比数列{an}中,Sn为数列前n项和,若a1+an=17,a2an-1=16,Sn=31,求n及公比q.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)为奇函数,x>0时为增函数且f(2)=0,则{x|f(x-2)>0}={x|x>4或0<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\sqrt{{x}^{2}-2x-3}$,则该函数的单调递增区间为(  )
A.(-∞,1]B.[3,+∞)C.(-∞,-1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f($\frac{1}{x}$)=$\frac{x}{x+1}$,则f′(x)=(  )
A.$\frac{1}{1+x}$B.-$\frac{1}{1+x}$C.$\frac{1}{(1+x)^{2}}$D.-$\frac{1}{(1+x)^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax2-2x+3a-1(a∈R).
(1)当a>0时,设函数f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;
(2)设h(x)=$\frac{f(x)}{x}$,若h(x)在区间[1,2]上为增函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案