精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=(sinx-cosx)sinx,x∈R,则f(x)的最小正周期是(  )
A.πB.C.$\frac{π}{2}$D.2

分析 由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,求得结果.

解答 解:函数f(x)=(sinx-cosx)sinx=sin2x-sinxcosx=$\frac{1-cos2x}{2}$-$\frac{1}{2}$sin2x
=$\frac{1}{2}$-$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$),x∈R的最小正周期为 $\frac{2π}{2}$=π,
故选:A.

点评 本题主要考查三角恒等变换,正弦函数的周期性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如图所示,网格纸上小正方形的边长为1cm,粗实线为某空间几何体的三视图,则该几何体的体积为(  ) 
A.2 cm3B.4 cm3C.6 cm3D.8 cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.直线y=ax+1与双曲线3x2-y2=1相交于A、B两点.
(1)当a为何值时,以AB为直径的圆过原点?
(2)当a为何值时,A,B两点分别在双曲线的两支上?当a为何值时,A,B两点在双曲线的同一支上?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在下图平行四边形?OABC中,两对角线OB与AC相交于点D,若$\overrightarrow{OA}$=(3,1),$\overrightarrow{OC}$=(1,3),则向量$\overrightarrow{OD}$的坐标是(2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若关于x的不等式xlnx+x-kx+3k>0对任意x>1恒成立,则整数k的最大值是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=$\frac{x}{ax+b}$(a≠0),f(2)=1,又方程f(x)=x有唯一解,则a+b=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.过点A(-3,4)的直线l与两坐标轴围成的三角形的面积为3,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若等比数列{an}的公比为q,n为偶数,则数列的第$\frac{n}{2}$项为(  )
A.a1q${\;}^{\frac{n}{2}}$B.a1q${\;}^{\frac{n-2}{2}}$C.a1q${\;}^{\frac{n-1}{2}}$D.a1q${\;}^{\frac{n}{2}+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一条光线沿直线x-2y+1=0入射到直线x+y-5=0后反射,求反射光线所在的直线方程.

查看答案和解析>>

同步练习册答案