【题目】已知椭圆
的右焦点为
且过点
椭圆C与
轴的交点为A、B(点A位于点B的上方),直线
与椭圆C交于不同的两点M、N(点M位于点N的上方).
![]()
(1)求椭圆C的方程;
(2)求△OMN面积的最大值;
(3)求证:直线AN和直线BM交点的纵坐标为常值.
【答案】(1)
(2)
(3)
,证明见解析
【解析】
(1)由题可知
,椭圆过点
所以将点代入可得
,再结合椭圆的关系式即可求解
(2)联立椭圆和直线的方程,表示出韦达定理,再表示出弦长公式,用点到直线距离公式表示出点
到直线距离,进一步化简求值即可
(3)结合(2)中的韦达定理,表示出直线
与直线
方程,再联立求解即可
(1)由题可知
,又椭圆过点
所以将点
代入椭圆的标准方程可得
,结合椭圆的关系式
,可得
,所以椭圆的标准方程为![]()
(2)设
,联立方程组
,
化简得
,由△
,
解得
,由韦达定理,得
,
,
,点
到直线距离
,则![]()
,令
,
,则
可代换为![]()
当
时,
取到最大值,![]()
(3)借用(2)中的韦达定理,直线
的方程
①
直线
的方程
②,联立①②,
得![]()
即![]()
直线
与直线
的交点
在定直线
上.
科目:高中数学 来源: 题型:
【题目】若正项数列
满足:
,则称此数列为“比差等数列”.
(1)试写出一个“比差等数列”的前
项;
(2)设数列
是一个“比差等数列”,问
是否存在最小值,如存在,求出最小值;如不存在,请说明理由;
(3)已知数列
是一个“比差等数列”,
为其前
项的和,试证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知实数
,函数
.
(1)当
时,求函数
的值域;
(2)当
时,判断函数
的单调性,并证明;
(3)求实教
的范围,使得对于区间
上的任意三个实数
,都存在以
为边长的三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为
,第七个音的频率为
,则
=
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
及点
,若直线
与椭圆
交于点
,且
(
为坐标原点),椭圆
的离心率为
.
(1)求椭圆
的标准方程;
(2)若斜率为
的直线
交椭圆
于不同的两点
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
以
、
为焦点,且过点![]()
(1)求双曲线
与其渐近线的方程;
(2)是否存在斜率为2的直线
与双曲线
右支相交于
两点,且
(
为坐标原点).若存在,求直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】作为交通重要参与者的行人,闯红灯通行频有发生,带来了较大的交通安全隐患.在某十字路口,交警部门从穿越该路口的行人中随机抽取了200人进行调查,得到不完整的
列联表如图所示:
年龄低于30岁 | 年龄不低于30岁 | 合计 | |
闯红灯 | 60 | 80 | |
未闯红灯 | 80 | ||
合计 | 200 |
(1)将
列联表补充完整;
(2)是否有99.9%的把握认为行人是否闯红灯与年龄有关.
参考公式及数据:
,其中
.
P( | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com