【题目】已知圆C经过两点A(3,3),B(4,2),且圆心C在直线上。
(Ⅰ)求圆C的方程;
(Ⅱ)直线过点D(2,4),且与圆C相切,求直线的方程。
【答案】(1)(2)直线的方程为或
【解析】试题分析:(1)两点式求得线段的垂直平分线方程,与直线联立可得圆心坐标,由两点间的距离公式可得圆的半径,从而可得圆的方程;(2)验证斜率不存在时直线符合题意,设出斜率存在时的切线方程,各根据圆心到直线的距离等于半径求出,从而可得直线的方程为.
试题解析:(1)因为圆C与轴交于两点A(3,3),B(4,2),所以圆心在直线上由得即圆心C的坐标为(3,2)
半径
所以圆C的方程为
(2)①当直线的斜率存在时,设斜率为,
则直线方程为,即
因为直线与圆相切,
直线的方程为
②当直线的斜率不存在时,直线方程为
此时直线与圆心的距离为1(等于半径)
所以, 符合题意。
综上所述,直线的方程为或。
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知任意角以坐标原点为顶点,轴的非负半轴为始边,若终边经过点,且,定义:,称“”为“正余弦函数”,对于“正余弦函数”,有同学得到以下性质:
①该函数的值域为; ②该函数的图象关于原点对称;
③该函数的图象关于直线对称; ④该函数为周期函数,且最小正周期为;
⑤该函数的递增区间为.
其中正确的是__________.(填上所有正确性质的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司近年来科研费用支出万元与公司所获利润万元之间有如表的统计
数据:参考公式:用最小二乘法求出关于的线性回归方程为: ,
其中: , ,参考数值: 。
(Ⅰ)求出;
(Ⅱ)根据上表提供的数据可知公司所获利润万元与科研费用支出万元线性相关,请用最小二乘法求出关于的线性回归方程;
(Ⅲ)试根据(Ⅱ)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量,函数的最小值为.
(1)当时,求的值;
(2)求;
(3)已知函数为定义在上的增函数,且对任意的都满足,问:是否存在这样的实数,使不等式对所有恒成立,若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享汽车的出现为我们的出行带来了极大的便利,当然也为投资商带来了丰厚的利润。现某公司瞄准这一市场,准备投放共享汽车。该公司取得了在个省份投放共享汽车的经营权,计划前期一次性投入元. 设在每个省投放共享汽车的市的数量相同(假设每个省的市的数量足够多),每个市都投放辆共享汽车.由于各个市的多种因素的差异,在第个市的每辆共享汽车的管理成本为()元(其中为常数).经测算,若每个省在个市投放共享汽车,则该公司每辆共享汽车的平均综合管理费用为元.(本题中不考虑共享汽车本身的费用)
注:综合管理费用=前期一次性投入的费用+所有共享汽车的管理费用,平均综合管理费用=综合管理费用÷共享汽车总数.
(1)求的值;
(2)问要使该公司每辆共享汽车的平均综合管理费用最低,则每个省有几个市投放共享汽车?此时每辆共享汽车的平均综合管理费用为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一台风中心在港口南偏东方向上,距离港口千米处的海面上形成,并以每小时千米的速度向正北方向移动,距台风中心千米以内的范围将受到台风的影响,则港口受到台风影响的时间为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com