精英家教网 > 高中数学 > 题目详情

【题目】【2017北京丰台5月综合测试】已知函数.

时,求曲线在点处的切线方程;

证明:对于在区间上有极小值,且极小值大于0.

【答案】12见解析

【解析】

的定义域为

因为,所以,所以.

因为

所以曲线在点处的切线方程为.

因为,所以在区间上是单调递增函数.

因为

所以,使得.

所以

上单调递减,在上单调递增,

所以有极小值.

因为,

所以.

所以上单调递减,所以

,所以函数的极小值大于0.

点睛:本题考查导数的几何意义以及函数的单调性与极值问题.函数y=fx在x=x0处的导数的几何意义,就是曲线y=fx在点Px0,y0处的切线的斜率,过点P的切线方程为:.求函数y=fx在点Px0,y0处的切线方程与求函数y=fx过点Px0,y0的切线方程意义不同,前者切线有且只有一条,且方程为y-y0=f′x0)(x-x0,后者可能不只一条.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:函数 在区间(m,m+1)上单调递减,命题q:实数m满足方程 表示的焦点在y轴上的椭圆.
(1)当p为真命题时,求m的取值范围;
(2)若命题“p且q”为假命题,“p或q”为真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】建造一间地面面积为12m2的背面靠墙的猪圈,底面为长方形的猪圈正面的造价为120元/m2 , 侧面的造价为80元/m2 , 屋顶造价为1120元.如果墙高3m,且不计猪圈背面的费用,问怎样设计能使猪圈的总造价最低,最低总造价是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017安徽阜阳二模】一企业从某生产线上随机抽取件产品,测量这些产品的某项技术指标值,得到的频率分布直方图如图.

1估计该技术指标值平均数

2在直方图的技术指标值分组中,以落入各区间的频率作为取该区间值的频率,若,则产品不合格,现该企业每天从该生产线上随机抽取件产品检测,记不合格产品的个数为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的结果是(

A.16
B.17
C.14
D.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,2), =(x,1);
(1)若( +2 )⊥(2 )时,求x的值;
(2)若向量 与向量 的夹角为锐角,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1 , 则异面直线BA1与AC1所成的角等于(  )

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某通讯公司需要在三角形地带OAC区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域BOC内,乙中转站建在区域AOB内.分界线OB固定,且OB=(1+ )百米,边界线AC始终过点B,边界线OA、OC满足∠AOC=75°,∠AOB=30°,∠BOC=45°.设OA=x(3≤x≤6)百米,OC=y百米.

(1)试将y表示成x的函数,并求出函数y的解析式;
(2)当x取何值时?整个中转站的占地面积SOAC最小,并求出其面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017南通一模(本题满分16分)如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进行裁剪。已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪。

(1)当时,试判断四边形MNPE的形状,并求其面积;

(2)若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由。

查看答案和解析>>

同步练习册答案