精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}满足:对任意的n∈N*均有an+1=kan+3k﹣3,其中k为不等于0与1的常数,若ai∈{﹣678,﹣78,﹣3,22,222,2222},i=2,3,4,5,则满足条件的a1所有可能值的和为

【答案】
【解析】解:∵an+1=kan+3k﹣3, ∴an+1+3=k(an+3),
∴①若a1=﹣3,则a1+1+3=k(a1+3)=0,a2=﹣3,同理可得,a3=a4=a5=﹣3,即a1=﹣3复合题意;
②若a1≠﹣3,k为不等于0与1的常数,则数列{an+3}是以k为公比的等比数列,
∵ai∈{﹣678,﹣78,﹣3,22,222,2222},i=2,3,4,5,
an+3可以取﹣675,﹣75,25,225,
∵﹣75=25×(﹣3),225=﹣75×(﹣3),﹣675=225×(﹣3),
∴若公比|k|>1,则k=﹣3,由a2+3=22+3=﹣3(a1+3)得:a1=﹣ ﹣3=﹣
若公比|k|<1,则k=﹣ ,由a2+3=﹣675=﹣ (a1+3)得:a1=2025﹣3=2022;
综上所述,满足条件的a1所有可能值为﹣3,﹣ ,2022.
∴a1所有可能值的和为:﹣3﹣ +2022=
所以答案是:
【考点精析】解答此题的关键在于理解数列的通项公式的相关知识,掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】动点 与定点 的距离和它到定直线 的距离的比是 ,记点 的轨迹为 .
(1)求曲线 的方程;
(2)对于定点 ,作过点 的直线 与曲线 交于不同的两点 ,求△ 的内切圆半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的方程为x2+y2﹣6x=0,过点(1,2)的该圆的三条弦的长a1 , a2 , a3构成等差数列,则数列a1 , a2 , a3的公差的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若y=f(x)在(0,+∞)恒单调递减,求a的取值范围;
(2)若函数y=f(x)有两个极值点x1 , x2(x1<x2),求a的取值范围并证明x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: =1经过点(2,3),两条渐近线的夹角为60°,直线l交双曲线于A,B两点.
(1)求双曲线C的方程;
(2)若l过原点,P为双曲线上异于A,B的一点,且直线PA,PB的斜率kPA , kPB均存在,求证:kPAkPB为定值;
(3)若l过双曲线的右焦点F1 , 是否存在x轴上的点M(m,0),使得直线l绕点F1无论怎样转动,都有 =0成立?若存在,求出M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2ax(a>0).
(1)当a=2时,解关于x的不等式﹣3<f(x)<5;
(2)对于给定的正数a,有一个最大的正数M(a),使得在整个区间[0,M(a)]上,不等式|f(x)|≤5恒成立.求出M(a)的解析式;
(3)函数y=f(x)在[t,t+2]的最大值为0,最小值是﹣4,求实数a和t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是(
A.(0, ]
B.[ ]
C.[ ]∪{ }
D.[ )∪{ }

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数y=f(x)的图象恰好经过k个格点,则称函数y=f(x)为k阶格点函数.已知函数:①y=x2;②y=2sinx,③y=πx﹣1;④y=cos(x+ ).其中为一阶格点函数的序号为(注:把你认为正确论断的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=(2x2﹣ax﹣6a2)ln(x﹣a)的值域是[0,+∞),则实数a=

查看答案和解析>>

同步练习册答案