精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知直线l的参数方程是
x=
2
2
t, 
y=
2
2
t+4
2
(t为参数);以O为极点,x轴正半轴为极轴的极坐标系中,圆C的极坐标方程为ρ=2cos(θ+
π
4
)
.由直线l上的点向圆C引切线,求切线长的最小值.
分析:把参数方程和极坐标方程化为直角坐标方程,可得圆和直线相离.由于直线l上的点到圆C的距离最小值为圆心到直线的距离d=5,可得切线的最小值为
d2-r2

,计算求得结果.
解答:解:把直线l的参数方程
x=
2
2
t, 
y=
2
2
t+4
2
(t为参数)化为普通方程为 x-y+4
2

圆C的极坐标方程为ρ=2cos(θ+
π
4
)
,即 ρ2=2ρ•
2
2
cosθ-2ρ•
2
2
sinθ,即 x2+y2=
2
x-
2
y,
(x-
2
2
)
2
+(y+
2
2
)
2
=1,表示以C(
2
2
,-
2
2
)为圆心,半径等于1的圆.
由于圆心C到直线 x-y+4
2
的距离为d=
|
2
2
+
2
2
+4
2
|
2
=5,故圆和直线相离.
要使切线长最小,只有直线l上的点到圆C的距离最小,此时,直线l上的点到圆C的距离最小值为d=5,
故切线的最小值为
d2-r2
=
25-1
=2
6
点评:本题主要考查把参数方程和极坐标方程化为直角坐标方程,直线和圆的位置关系,点到直线的距离公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案