精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为SnSn=
1
2
(3n-1)
(n∈N*),等差数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1,a2+b2,a3+b3成等比数列.
(1)求数列{an},{bn}的通项公式;
(2)求数列{an+bn}的前n项和Tn
(1)a1=1,an=Sn-Sn-1=3n-1,n>1,
∴an=3n-1(n∈N*),
∴数列{an}是以1为首项,3为公比的等比数列,
∴a1=1,a2=3,a3=9,
在等差数列{bn}中,
∵b1+b2+b3=15,∴b2=5.
又因a1+b1,a2+b2,a3+b3成等比数列,
设等差数列{bn}的公差为d,
∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,
∵bn>0(n∈N*),
∴舍去d=-10,取d=2,∴b1=3.
∴bn=2n+1(n∈N*).
(2)由(1)知
∴Tn=a1+b1+a2+b2+…+an+bn
=(a1+a2+…+an)+(b1+b2+…+bn) 
=
1-3n
1-3
+
n(3+2n+1)
2
=
3n
2
+n2+2n-
1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案