精英家教网 > 高中数学 > 题目详情
5.函数y=2cos(2x+$\frac{π}{4}$),x∈R的单调递减区间是(  )
A.[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈ZB.[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z
C.[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈ZD.[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z

分析 根据余弦函数的单调性质,即可求出结论.

解答 解:令2kπ≤2x+$\frac{π}{4}$≤2kπ+π,k∈Z,
解得kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,k∈Z,
所以函数y=2cos(2x+$\frac{π}{4}$)的单调减区间为:
[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈Z.
故选:C.

点评 本题主要考查了余弦函数单调性的应用问题,熟练掌握三角函数的图象和性质是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.把三枚硬币一起抛出,出现2枚正面向上,一枚反面向上的概率是(  )
A.$\frac{2}{3}$B.$\frac{3}{8}$C.$\frac{1}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.复数z=x+yi(x,y∈R),且2x+y+ilog2x-8=(1-log2y)i,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,已知得分在[50,60),[90,100]的频数分别为8,2.
(1)求样本容量n和频率分布直方图中的x,y的值;
(2)估计本次竞赛学生成绩的中位数;
(3)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设G为△ABC的重心,过G作直线l分别交线段AB,AC(不与端点重合)于P,Q.若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,$\overrightarrow{AQ}$=μ$\overrightarrow{AC}$.
(1)求$\frac{1}{λ}$+$\frac{1}{μ}$的值;
(2)求λμ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知三棱柱ABC-A′B′C′的所有棱长都是2,且∠A′AB=∠A′AC=60°.
(1)求证:点A′在底面ABC内的射影在∠BAC的平分线上;
(2)求棱柱ABC-A′B′C′的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xOy中,设倾斜角为α的直线L:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$ (T为参数)与曲线C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数)相交于不同的两点A,B.
(1)若α=$\frac{π}{3}$,若以坐标原点为极点,x轴的正半轴为极轴,求直线AB的极坐标方程;
(2)若直线的斜率为$\frac{\sqrt{5}}{4}$,点P(2,$\sqrt{3}$),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,侧面PBC是边长为2的等边三角形,点E是PC的中点,且平面PBC⊥平面ABCD.
(Ⅰ)求异面直线PD与AC所成角的余弦值;
(Ⅱ)若点F在PC边上移动,是否存在点F使平面BFD与平面APC所成的角为90°?若存在,则求出点F坐标,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在一个盒子里盛有若干个均匀的红球和白球,从中任取一个球,取到红球的概率为$\frac{1}{3}$;若从中任取两个球,取到的全是红球的概率为$\frac{1}{11}$,则盒子里一共有红球和白球(  )
A.6个B.9个C.12个D.24个

查看答案和解析>>

同步练习册答案