精英家教网 > 高中数学 > 题目详情
20.设G为△ABC的重心,过G作直线l分别交线段AB,AC(不与端点重合)于P,Q.若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,$\overrightarrow{AQ}$=μ$\overrightarrow{AC}$.
(1)求$\frac{1}{λ}$+$\frac{1}{μ}$的值;
(2)求λμ的取值范围.

分析 (1)用$\overrightarrow{AB}$,$\overrightarrow{AC}$表示出$\overrightarrow{PQ}$,$\overrightarrow{PG}$,根据P,Q,G三点共线得出λ,μ的关系;
(2)用λ表示出μ,令λ,μ∈(0,1)得出λ的范围,则λμ可表示为关于λ的函数,求出该函数的最值即可.

解答 解:(1)连接AG并延长,交BC于M,则M是BC的中点,设$\overrightarrow{AB}=\overrightarrow{b}$,$\overrightarrow{AC}=\overrightarrow{c}$
$则\overrightarrow{AM}=\frac{1}{2}({\overrightarrow{AB}+\overrightarrow{AC}})=\frac{1}{2}({\overrightarrow b+\overrightarrow c}),\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AM}=\frac{1}{3}({\overrightarrow b+\overrightarrow c})①$,
$又\overrightarrow{AP}=λ\overrightarrow{AB}=λ\overrightarrow b,\overrightarrow{AQ}=μ\overrightarrow{AC}=μ\overrightarrow c,②$
∴$\overrightarrow{PQ}=\overrightarrow{AQ}-\overrightarrow{AP}=μ\overrightarrow c-λ\overrightarrow b,\overrightarrow{PG}=\overrightarrow{AG}-\overrightarrow{AP}=\frac{1}{3}({\overrightarrow b+\overrightarrow c})-λ\overrightarrow b=({\frac{1}{3}-λ})\overrightarrow b+\frac{1}{3}\overrightarrow c$.
∵P,G,Q三点共线,故存在实数t,使$\overrightarrow{PG}=t\overrightarrow{PQ}$,
∴$\left\{\begin{array}{l}{\frac{1}{3}-λ=-λt}\\{\frac{1}{3}=μt}\end{array}\right.$,
∴$\frac{1}{λ}+\frac{1}{μ}=3$;
(2)由(1)得μ=$\frac{λ}{3λ-1}$,
∵λ,μ∈(0,1),∴$\left\{\begin{array}{l}{0<λ<1}\\{0<\frac{λ}{3λ-1}<1}\end{array}\right.$,解得$\frac{1}{2}$<λ<1.∴1<$\frac{1}{λ}<2$.
∴λμ=$\frac{{λ}^{2}}{3λ-1}$=$\frac{1}{\frac{3}{λ}-\frac{1}{{λ}^{2}}}$=$\frac{1}{-(\frac{1}{λ}-\frac{3}{2})^{2}+\frac{9}{4}}$.
∴当$\frac{1}{λ}=\frac{3}{2}$时,λμ取得最小值$\frac{4}{9}$,当$\frac{1}{λ}$=1或2时,λμ取得最大值$\frac{1}{2}$.
∴λμ的取值范围是[$\frac{4}{9}$,$\frac{1}{2}$).

点评 本题考查了平面向量的基本定理,不等式的解法,根据图形寻找向量的关系是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}的前n项和为Sn,a3=5,S5=3S3-2.
(1)求{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线C1:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=2+tsinα}\end{array}\right.$(t为参数),以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ+2$\sqrt{2}$cos(θ+$\frac{π}{4}$),且C1与C2相交于A,B两点;
(1)当tanα=1时,判断直线C1与曲线C2的位置关系,并说明理由;
(2)当α变化时,求弦AB的中点P的普通方程,并说明它是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)短轴的两个顶点与右焦点的连线构成等边三角形,椭圆C上任意一点到椭圆左右两个焦点的距离之和为4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)椭圆C与X轴负半轴交于点A,直线过定点(-1,0)交椭圆于M,N两点,求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,在平行四边形ABCD中,AB=a,BC=1,∠BAD=60°,E为线段CD(端点C、D除外)上一动点,将△ADE沿直线AE翻折,在翻折过程中,若存在某个位置使得直线AD与BC垂直,则a的取值范围是(  )
A.($\sqrt{2}$,+∞)B.($\sqrt{3}$,+∞)C.($\sqrt{2}$+1,+∞)D.($\sqrt{3}$+1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=2cos(2x+$\frac{π}{4}$),x∈R的单调递减区间是(  )
A.[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈ZB.[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z
C.[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈ZD.[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.2015年,中国社科院发布《中国城市竞争力报告》,公布了中国十佳宜居城市和十佳最美丽城市,如表:
中国十佳宜居城市中国十佳最美丽城市
排名城市得分排名城市得分
1深圳90.21杭州93.7
2珠海89.82拉萨93.5
3烟台88.33深圳93.3
4惠州86.54青岛92.2
5信阳83.15大连92.0
6厦门81.46银川91.9
7金华79.27惠州90.6
8柳州77.88哈尔滨90.3
9扬州75.99信阳89.3
10九江74.610烟台88.8
(I)记“中国十佳宜居城市”和“中国十佳最美丽城市”得分的平均数分别为$\overline{{x}_{1}}$与$\overline{{x}_{2}}$,方差分别为S12,S22,试比较$\overline{{x}_{1}}$与$\overline{{x}_{2}}$,S12,S22的大小;(只需要写出结论)
(Ⅱ)某人计划从“中国十佳最美丽城市”中随机选取3个游览,求选到的城市至多有一个是“中国十佳宜居城市”的概率.
(Ⅲ)旅游部门从“中国十佳宜居城市”和“中国十佳最美丽城市”中各随机选取1个进行调研,用X表示选到的城市既是“中国十佳宜居城市”又是“中国十佳最美丽城市”的个数(注:同一城市不重复计数),求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知公差不为零的等差数列{an}中,a1=1,且a1,a3,a9成等比数列.
(1)求数列{an}的通项公式 
(2)求数列{2an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=m(x-1)ex+$\frac{1}{2}$x2(m∈R),其导函数f′(x),若对任意的x<0,不等式x2+(m+1)x>f′(x)恒成立,则实数m的取值范围为(  )
A.(0,1)B.(-∞,1)C.(-∞,1]D.(1,+∞)

查看答案和解析>>

同步练习册答案