精英家教网 > 高中数学 > 题目详情
9.已知公差不为零的等差数列{an}中,a1=1,且a1,a3,a9成等比数列.
(1)求数列{an}的通项公式 
(2)求数列{2an}的前n项和Sn

分析 (1)根据等比数列和等差数列的通项公式建立方程关系即可求数列{an}的通项公式 
(2)求出数列{2an}的通项公式,即可求数列的前n项和Sn

解答 解:(1)设公差为d,
∵a1=1,且a1,a3,a9成等比数列.
∴a32=a1a9
即(1+2d)2=1×(1+8d),------(2分)
∴d=0(舍)或d=1,------(2分)
∴an=n------(1分)
(2)令bn=${2^{a_n}}={2^n}$------(1分)
∵$\frac{b_n}{{{b_{n-1}}}}=\frac{2^n}{{{2^{n-1}}}}=2$,为定常数
∴{bn}是以2为首项2为公比的等比数列------(2分)
∴Sn=$\frac{{2*(1-{2^n})}}{1-2}={2^{n+1}}-2$------(2分)

点评 本题主要考查数列通项公式以及数列求和的计算,根据条件建立方程关系求出d是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.数列1,$\frac{1}{2}$,$\frac{2}{1}$,$\frac{1}{3}$,$\frac{2}{2}$,$\frac{3}{1}$,$\frac{1}{4}$,$\frac{2}{3}$,$\frac{3}{2}$,$\frac{4}{1}$,…,则$\frac{3}{5}$是该数列的第24项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设G为△ABC的重心,过G作直线l分别交线段AB,AC(不与端点重合)于P,Q.若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,$\overrightarrow{AQ}$=μ$\overrightarrow{AC}$.
(1)求$\frac{1}{λ}$+$\frac{1}{μ}$的值;
(2)求λμ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xOy中,设倾斜角为α的直线L:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$ (T为参数)与曲线C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数)相交于不同的两点A,B.
(1)若α=$\frac{π}{3}$,若以坐标原点为极点,x轴的正半轴为极轴,求直线AB的极坐标方程;
(2)若直线的斜率为$\frac{\sqrt{5}}{4}$,点P(2,$\sqrt{3}$),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=2cosx•($\sqrt{3}$sinx-cosx)+1的图象可由函数y=2sin2x的图象向左平移a(a>0)个单位后得到,则实数a的最小值为(  )
A.$\frac{11π}{12}$B.$\frac{π}{12}$C.$\frac{5π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,侧面PBC是边长为2的等边三角形,点E是PC的中点,且平面PBC⊥平面ABCD.
(Ⅰ)求异面直线PD与AC所成角的余弦值;
(Ⅱ)若点F在PC边上移动,是否存在点F使平面BFD与平面APC所成的角为90°?若存在,则求出点F坐标,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.二项式($\frac{1}{x}$-x)9的展开式中x3的系数是(  )
A.84B.-84C.126D.-126

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.复数z=$\frac{(1-i)^{2}}{2i}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在正方体ABCD-A1B1C1D1中,AA1=2,E为棱AA1的中点.
(1)求证:AC1⊥B1D1
(2)求三棱锥E-ABD的体积.

查看答案和解析>>

同步练习册答案