精英家教网 > 高中数学 > 题目详情
3.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=\frac{1}{3}y}\end{array}\right.$后的图形.
(1)5x+2y=0
(2)x2+y2=1.

分析 根据题意,由伸缩变换公式换$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=\frac{1}{3}y}\end{array}\right.$,可得$\left\{\begin{array}{l}{x=2x′}\\{y=3y′}\end{array}\right.$,将其代入(1)(2)的方程,化简变形即可得答案.

解答 解:伸缩变换$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=\frac{1}{3}y}\end{array}\right.$,则$\left\{\begin{array}{l}{x=2x′}\\{y=3y′}\end{array}\right.$,
(1)若5x+2y=0,则5(2x′)+2(3y′)=0,
即5x+3y=0,为一条直线;
(2)若x2+y2=1,则(2x′)2+(3y′)2=1,
即4x2+9y2=1,为椭圆.

点评 本题考查平面直角坐标系中的伸缩变换,关键是牢记伸缩变换的公式与形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+$…$+\frac{1}{n(n+1)}$=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.掷3枚均匀硬币一次,求正面个数与反面个数之差X的分布列,并求其均值和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知在平面直角坐标系中,曲线f(x)=alnx+x在x=a处的切线过原点,则a=(  )
A.1B.eC.$\frac{1}{e}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x-1|,x∈R
(Ⅰ)求不等式|f(x)-3|≤4的解集;
(Ⅱ)若f(x)+f(x+3)≥m2-2m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某工厂为了对新研发的一种产品进行合理定价,将该定价按事先拟定的价格进行试销,得到如下数据:
单价x(元)88.28.48.68.89
销量y(元)908483807568
(1)求回归直线方程$\hat y=bx+a$;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?
附:$b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数$y=2{sin^2}({x+\frac{π}{6}})$的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.等差数列{an}的前n项和为Sn,已知a1=10,a2为整数,且s4是sn的最大值.
(I)求{an}的通项公式;
(II)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l为曲线y=x2+x-2在点(1,0)处的切线,m为该曲线的另一条切线,且l⊥m
(1)求直线m的方程
 (2)求直线l、m和x轴所围成的三角形面积.

查看答案和解析>>

同步练习册答案