精英家教网 > 高中数学 > 题目详情
14.掷3枚均匀硬币一次,求正面个数与反面个数之差X的分布列,并求其均值和方差.

分析 由题意知X的可能取值是-3,-1,1,3,结合变量对应的事件,写出变量的概率值,列出分布列,求出均值和方差.

解答 解:X=-3,-1,1,3,且P(X=-3)=$\frac{1}{2}$×$\frac{1}{2}$×$\frac{1}{2}$=$\frac{1}{8}$;
P(X=-1)=C31×$\frac{1}{2}$×($\frac{1}{2}$)2=$\frac{3}{8}$,
P(X=1)=C32×$\frac{1}{2}$×($\frac{1}{2}$)2=$\frac{3}{8}$,
P(X=3)=$\frac{1}{2}$×$\frac{1}{2}$×$\frac{1}{2}$=$\frac{1}{8}$;
∴分布列为

X-3-213
P$\frac{1}{8}$$\frac{3}{8}$$\frac{3}{8}$$\frac{1}{8}$
∴EX=0,DX=3.

点评 本题考查离散型随机变量的分布列和期望,本题解题的关键是看出变量的可能取值,并且把变量同事件结合起来,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知某商场新进3000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为1211.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式 x2-3x-4>0的解集为{x|x<-1或x>4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.数列{an}中,a1=3,对任意n∈N*,向量$\overrightarrow{a}$=(an+1,3)与$\overrightarrow{b}$=(an,1)都平行,数列{bn}满足bn=31-31log3an
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Bn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将区间[2,8]等间隔地插入n-1个点,则每个区间的长度为$\frac{6}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知tanα=2,则$\frac{1}{sin2α}$=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.以直角坐标系xOy的原点为极点,x轴的非负半轴为极轴,且两坐标系取相同的长度单位.已知曲线C1的参数方程为:$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ为参数),将曲线C1上每一点的纵坐标变为原来的$\frac{1}{2}$倍(横坐标不变),得到曲线C2,直线l的极坐标方程:$\sqrt{3}ρcosθ+2ρsinθ+m=0$.
(Ⅰ)求曲线C2的参数方程;
(Ⅱ)若曲线C2上的点到直线l的最大距离为$2\sqrt{7}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=\frac{1}{3}y}\end{array}\right.$后的图形.
(1)5x+2y=0
(2)x2+y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对于实数a,b,c,有以下命题:
①若a>b,则ac<bc;
②若ac2>bc2,则a>b;
③若a<b<0,则a2>ab>b2
④若$a>b,\frac{1}{a}>\frac{1}{b}$,则a>0,b<0.
其中真命题的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案