精英家教网 > 高中数学 > 题目详情
6.以直角坐标系xOy的原点为极点,x轴的非负半轴为极轴,且两坐标系取相同的长度单位.已知曲线C1的参数方程为:$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ为参数),将曲线C1上每一点的纵坐标变为原来的$\frac{1}{2}$倍(横坐标不变),得到曲线C2,直线l的极坐标方程:$\sqrt{3}ρcosθ+2ρsinθ+m=0$.
(Ⅰ)求曲线C2的参数方程;
(Ⅱ)若曲线C2上的点到直线l的最大距离为$2\sqrt{7}$,求m的值.

分析 (Ⅰ)设曲线C1上一点P(x1,y1)与曲线C2上一点Q(x,y),由题知:$\left\{\begin{array}{l}x={x_1}\\ y=\frac{y_1}{2}\end{array}\right.$,由此能求出曲线C2的参数方程.
(Ⅱ) 直线l的直角坐标方程为:$\sqrt{3}x+2y+m=0$,求出曲线C2上一点B(2cosθ,sinθ)到直线l的距离,由此能求出m的值.

解答 解:(Ⅰ) 设曲线C1上一点P(x1,y1)与曲线C2上一点Q(x,y),
由题知:$\left\{\begin{array}{l}x={x_1}\\ y=\frac{y_1}{2}\end{array}\right.$,
所以$\left\{\begin{array}{l}x=2cosθ\\ y=sinθ\end{array}\right.$(θ为参数).
(Ⅱ) 由题知可得:直线l的直角坐标方程为:$\sqrt{3}x+2y+m=0$,
设曲线C2上一点B(2cosθ,sinθ)到直线l的距离为d,
则$d=\frac{{|{2\sqrt{3}cosθ+2sinθ+m}|}}{{\sqrt{7}}}=\frac{{|{4sin({θ+\frac{π}{3}})+m}|}}{{\sqrt{7}}}$,
当m>0时,${d_{max}}=\frac{4+m}{{\sqrt{7}}}=2\sqrt{7}$,解得:m=10,
当m<0时,${d_{max}}=\frac{4-m}{{\sqrt{7}}}=2\sqrt{7}$,解得:m=-10,
综上所述:m=±10.

点评 本题考查曲线的参数方程的求法,考查实数值的求法,涉及到参数方程、普通方程、极坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f'(x)的图象如图所示,给出关于f(x)的下列命题:
x-10245
f(x)12021
①函数y=f(x)在x=2时取极小值;
②函数f(x)在[0,1]上是减函数,在[1,2]上是增函数;
③当1<a<2时,函数y=f(x)-a有3个零点;
④如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最小值为0.
所有正确命题的序号为①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知全集U=R,集合A={x|x2-x-6≤0},B={x|${log}_{\frac{1}{2}}$x≥-1},则集合A∩(∁UB)=[-2,0]∪(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.掷3枚均匀硬币一次,求正面个数与反面个数之差X的分布列,并求其均值和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E为PD的中点.
(1)求直线CE与平面ABCD所成角的大小;
(2)求二面角E-AC-D的大小,(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知在平面直角坐标系中,曲线f(x)=alnx+x在x=a处的切线过原点,则a=(  )
A.1B.eC.$\frac{1}{e}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x-1|,x∈R
(Ⅰ)求不等式|f(x)-3|≤4的解集;
(Ⅱ)若f(x)+f(x+3)≥m2-2m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数$y=2{sin^2}({x+\frac{π}{6}})$的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$(t为参数),C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数).
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为t=$\frac{π}{2}$,Q为C2上的动点,求PQ中点M到直线C3:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$,(t为参数)距离的最小值.

查看答案和解析>>

同步练习册答案