精英家教网 > 高中数学 > 题目详情
15.函数$y=2{sin^2}({x+\frac{π}{6}})$的最小正周期为π.

分析 利用二倍角的余弦公式化简函数的解析式,再根据y=Acos(ωx+φ )的周期等于 T=$\frac{2π}{ω}$,得出结论.

解答 解:函数$y=2{sin^2}({x+\frac{π}{6}})$=2${sin}^{2}(x+\frac{π}{6})$-1+1=-cos(2x+$\frac{π}{3}$)+1 的最小正周期为$\frac{2π}{2}$=π,
故答案为:π.

点评 本题主要考查三角函数的周期性及其求法,二倍角的余弦公式,利用了y=Acos(ωx+φ )的周期T=$\frac{2π}{ω}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.不等式 x2-3x-4>0的解集为{x|x<-1或x>4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.以直角坐标系xOy的原点为极点,x轴的非负半轴为极轴,且两坐标系取相同的长度单位.已知曲线C1的参数方程为:$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ为参数),将曲线C1上每一点的纵坐标变为原来的$\frac{1}{2}$倍(横坐标不变),得到曲线C2,直线l的极坐标方程:$\sqrt{3}ρcosθ+2ρsinθ+m=0$.
(Ⅰ)求曲线C2的参数方程;
(Ⅱ)若曲线C2上的点到直线l的最大距离为$2\sqrt{7}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=\frac{1}{3}y}\end{array}\right.$后的图形.
(1)5x+2y=0
(2)x2+y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$cosx(sinx+cosx)+\frac{1}{2}$
(1)若$tanα=\frac{1}{2}$,求f(a)的值.
(2)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设α,β为锐角,且满足sin2α+sin2β=sin(α+β),则α+β=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.f(x)=|x-3|-2,g(x)=4-|x+1|
(Ⅰ)若f(x)≥g(x),求x的取值范围;
(Ⅱ)若不等式f(x)-g(x)≥a2-3a的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对于实数a,b,c,有以下命题:
①若a>b,则ac<bc;
②若ac2>bc2,则a>b;
③若a<b<0,则a2>ab>b2
④若$a>b,\frac{1}{a}>\frac{1}{b}$,则a>0,b<0.
其中真命题的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义在R上的函数f(x)使不等式${f^'}(2x)>\frac{ln2}{2}f(2x)$恒成立,其中f'(x)是f(x)的导数,则(  )
A.$\frac{f(2)}{f(0)}>2,\frac{f(0)}{{f({-2})}}>2$B.f(2)>2f(0)>4f(-2)C.$\frac{f(2)}{f(0)}<2,\frac{f(0)}{{f({-2})}}<2$D.f(2)<2f(0)<4f(-2)

查看答案和解析>>

同步练习册答案