精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f'(x)的图象如图所示,给出关于f(x)的下列命题:
x-10245
f(x)12021
①函数y=f(x)在x=2时取极小值;
②函数f(x)在[0,1]上是减函数,在[1,2]上是增函数;
③当1<a<2时,函数y=f(x)-a有3个零点;
④如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最小值为0.
所有正确命题的序号为①④.

分析 由函数f(x)在x=2处的附近导数左负右正,结合极值的定义,即可判断①;
由导数与单调性的关系,即可判断②;
由f(x)的图象和y=a的交点个数,即可判断③;
由f(x)的图象,结合单调性,即可得到t的最小值,即可判断④.

解答 解:由导数的图象可得,函数f(x)在x=2处的附近导数左负右正,
即为极小值点,则f(2)取得极小值,故①正确;
由导数的图象可得,f(x)在(0,2)导数为负的,
则f(x)在(0,2)递减,故②错;
由导数的图象可得f(x)在(-1,0)递增,在(0,2)递减,
在(2,4)递增,在(4,5)递减,如图所示.
当1<a<2时,y=f(x)的图象与y=a有四个交点,
函数y=f(x)-a有4个零点,故③错;
如果当x∈[-1,t]时,f(x)的最大值是2,
由f(x)的图象可得t的最小值为0,故④正确.
故答案为:①④.

点评 本题考查导数的运用:求单调性和极值、最值,考查函数方程的转化思想和数形结合的思想方法,考查判断能力和观察能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在△ABC中,内角A,B,C所对的边分别是a,b,c,若B=30°,$c=2\sqrt{3}$,b=2,则C=(  )
A.$\frac{π}{3}$B.$\frac{π}{3}$或$\frac{2π}{3}$C.$\frac{π}{4}$D.$\frac{π}{4}$或$\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=aln(x+1)+bx+1
(1)若函数y=f(x)在x=1处取得极值,且曲线y=f(x)在点(0,f(0))处的切线与直线2x+y-3=0平行,求a的值;
(2)若$b=\frac{1}{2}$,试讨论函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知某商场新进3000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为1211.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z满足(2-i)z=1+2i,则z=(  )
A.-2iB.$\frac{4}{5}+i$C.iD.$\frac{4}{5}+\frac{3}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.下表是一个有i行j列的表格.已知每行每列都成等差数列,
47a1,3a1,j
712a2,3a2,j
aa3,2a3,3a3,j
ai,1ai,2ai,3ai,j
其中ai,j表示表格中第i行第j列的数,则a4,5=49,ai,j=2ij+i+j.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=lnx-x在x∈(0,e]上的最大值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式 x2-3x-4>0的解集为{x|x<-1或x>4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.以直角坐标系xOy的原点为极点,x轴的非负半轴为极轴,且两坐标系取相同的长度单位.已知曲线C1的参数方程为:$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ为参数),将曲线C1上每一点的纵坐标变为原来的$\frac{1}{2}$倍(横坐标不变),得到曲线C2,直线l的极坐标方程:$\sqrt{3}ρcosθ+2ρsinθ+m=0$.
(Ⅰ)求曲线C2的参数方程;
(Ⅱ)若曲线C2上的点到直线l的最大距离为$2\sqrt{7}$,求m的值.

查看答案和解析>>

同步练习册答案