精英家教网 > 高中数学 > 题目详情
2.函数y=lnx-x在x∈(0,e]上的最大值为-1.

分析 利用导数研究函数f(x)在(0,e]上的单调性,由单调性即可求得最大值.

解答 解:f′(x)=$\frac{1}{x}$-1=$\frac{1-x}{x}$,
当x∈(0,1)时,f′(x)>0,当x∈(1,e)时,f′(x)<0,
所以f(x)在(0,1)上递增,在(1,e)上递减,
故当x=1时f(x)取得极大值,也为最大值,f(1)=-1,
故答案为:-1.

点评 本题考查利用导数研究函数在区间上的最值问题,属基础题,准确求导,熟练运算,是解决该类问题的基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{x^2}{m^2}-{y^2}=1$的焦距是4,则该双曲线的渐近线方程为(  )
A.$y=±\frac{{\sqrt{17}}}{17}x$B.$y=±\frac{{\sqrt{5}}}{5}x$C.$y=±\frac{{\sqrt{15}}}{15}x$D.$y=±\frac{{\sqrt{3}}}{3}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=f(x)在点(x0,y0)处的切线方程为y=2x+1,则$\lim_{△x→0}\frac{{f({x_0})-f({{x_0}-△x})}}{△x}$=(  )
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f'(x)的图象如图所示,给出关于f(x)的下列命题:
x-10245
f(x)12021
①函数y=f(x)在x=2时取极小值;
②函数f(x)在[0,1]上是减函数,在[1,2]上是增函数;
③当1<a<2时,函数y=f(x)-a有3个零点;
④如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最小值为0.
所有正确命题的序号为①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,a,b,c分别为A,B,C的对边,已知a,b,c成等比数列,a2-c2=ac+bc,a=3$\sqrt{3}$,则$\frac{b+c}{sinB+sinC}$=(  )
A.12B.6$\sqrt{2}$C.4$\sqrt{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+$…$+\frac{1}{n(n+1)}$=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BD D1B1所成角的等于45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知全集U=R,集合A={x|x2-x-6≤0},B={x|${log}_{\frac{1}{2}}$x≥-1},则集合A∩(∁UB)=[-2,0]∪(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x-1|,x∈R
(Ⅰ)求不等式|f(x)-3|≤4的解集;
(Ⅱ)若f(x)+f(x+3)≥m2-2m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案