精英家教网 > 高中数学 > 题目详情
2.数列{an}中,a1=3,对任意n∈N*,向量$\overrightarrow{a}$=(an+1,3)与$\overrightarrow{b}$=(an,1)都平行,数列{bn}满足bn=31-31log3an
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Bn的最大值.

分析 (1)通过向量$\overrightarrow{a}$=(an+1,3)与$\overrightarrow{b}$=(an,1)都平行可知an+1=3an,进而利用等比数列的通项公式可知an=3n
(2)通过(1)可知bn=31-31n,进而可知Bn=$-\frac{31}{2}$[$(n-\frac{1}{2})^{2}$-$\frac{1}{4}$],结合二次函数的性质可得结论.

解答 解:(1)因为对任意n∈N*,向量$\overrightarrow{a}$=(an+1,3)与$\overrightarrow{b}$=(an,1)都平行,
所以an+1=3an
又因为a1=3,
所以an=3n
(2)由(1)可知bn=31-31log3an=31-31$lo{g}_{3}{3}^{n}$=31-31n,
所以Bn=31n-31•$\frac{n(n+1)}{2}$=$-\frac{31}{2}$[$(n-\frac{1}{2})^{2}$-$\frac{1}{4}$],
显然当n=1时Bn取最大值B1=0.

点评 本题考查数列的通项及前n项和,涉及向量平行的坐标表示、对数的运算性质、等差数列的通项公式,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.两座灯塔A和B与海洋观察站C的距离分别为10km和20km,灯塔A在观察站C的北偏东15°方向上,灯塔B在观察站C的南偏西75°方向上,则灯塔A与灯塔B的距离为10$\sqrt{7}$km.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+$…$+\frac{1}{n(n+1)}$=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数$f(x)=2sin(ωx+ϕ)(ω>0,0<ϕ<\frac{π}{2})$,$f(-\frac{π}{4})=0$,$f(\frac{π}{4}-x)=f(\frac{π}{4}+x)$,且f(x)在$(\frac{π}{18},\frac{2π}{9})$上单调,则ω的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知全集U=R,集合A={x|x2-x-6≤0},B={x|${log}_{\frac{1}{2}}$x≥-1},则集合A∩(∁UB)=[-2,0]∪(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示的三棱柱ABC-A1B1C1中,底面是正三角形,侧棱BB1⊥面ABC,D是棱BC的中点,点M在棱BB1上,且CM⊥AC1
(1)求证:A1B∥平面AC1D;
(2)求证:CM⊥C1D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.掷3枚均匀硬币一次,求正面个数与反面个数之差X的分布列,并求其均值和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知在平面直角坐标系中,曲线f(x)=alnx+x在x=a处的切线过原点,则a=(  )
A.1B.eC.$\frac{1}{e}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.等差数列{an}的前n项和为Sn,已知a1=10,a2为整数,且s4是sn的最大值.
(I)求{an}的通项公式;
(II)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案