精英家教网 > 高中数学 > 题目详情
20.已知命题p:?x∈[0,$\frac{π}{2}$],cos2x+cosx-m=0为真命题,则实数m的取值范围是-1≤m≤2.

分析 根据三角函数的倍角公式将条件转化为一元二次函数进行求解即可.

解答 解:由cos2x+cosx-m=0得2cos2x-1+cosx-m=0,
即m=2cos2x+cosx-1,
设t=cosx,∵x∈[0,$\frac{π}{2}$],
∴0≤t≤1,
则m=2t2+t-1=2(t+$\frac{1}{4}$)2-$\frac{9}{8}$,
∵0≤t≤1,
∴函数在[0,1]上递增,
∴-1≤m≤2,
故答案为:-1≤m≤2

点评 本题主要考查特称命题的应用,根据三角函数的倍角公式,利用换元法转化为一元二次函数是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知sinθ,cosθ,θ∈(0,2π)是关于x的方程2x2-($\sqrt{3}$+1)x+m=0(m∈R)的两根.求:
(1)$\frac{si{n}^{2}θ}{sinθ-cosθ}$+$\frac{cosθ}{1-tanθ}$的值;
(2)m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知非零函数f(x)的定义域为R,对任意的x1,x2都满足f(x1+x2)=f(x1)f(x2) 当x>0时,f(x)>1
(1)判断f(x)的单调性并予以证明;
(2)若f(4cos2θ)•f(4sinθcosθ)=1,求θ的值;
(3)是否存在这样的实数m,当θ∈[0,$\frac{π}{2}$]时,使不等式f[cos2θ-(2+m)sinθ]•f(3+2m)>1对所有的θ恒成立,若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若二次函数y=x2-2ax+1在区间(2,3)内是单调函数,则实数a的取值范围是(-∞,2]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ln(x+a)-x2-x-b(a,b∈R)在x=0处取得极值.
(1)若函数f(x)在区间[-1,1]上有两个零点,求实数b的取值范围.
(2)证明:$\frac{2}{1^2}$+$\frac{3}{2^2}$+$\frac{4}{3^2}$+…+$\frac{n+1}{n^2}$>ln(n+1)(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求$\frac{|abc|}{ab}$+$\frac{|abc|}{bc}$+$\frac{|abc|}{ac}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.等差数列{an}的各项均为正数,a1=1,前n项和为Sn;{bn}为等比数列,b1=1,且b2S2=6,b3S3=24,n∈N*
(Ⅰ)求数列{an}和{bn}的通项公式;
(2)令${C_n}=\frac{n}{b_n}+\frac{1}{{{a_n}•{a_{n+2}}}}$,Tn=C1+C2+C3+…+Cn;是否存在最小的实数t,使得$t>{T_n}+\frac{2n+3}{2(n+1)(n+2)}$恒成立,若存在,请求出最小的实数t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在等差数列{an}中,已知a3=10,a9=28,则a12的值为37.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知变量x、y满足$\left\{{\begin{array}{l}{x-y+5≥0}\\{x≤3}\\{x+y+k≥0}\end{array}}\right.$,且z=2x+4y的最小值为-6,则常数k=(  )
A.2B.0C.3$\sqrt{10}$D.9

查看答案和解析>>

同步练习册答案