精英家教网 > 高中数学 > 题目详情
20.已知sinθ,cosθ,θ∈(0,2π)是关于x的方程2x2-($\sqrt{3}$+1)x+m=0(m∈R)的两根.求:
(1)$\frac{si{n}^{2}θ}{sinθ-cosθ}$+$\frac{cosθ}{1-tanθ}$的值;
(2)m的值.

分析 (1)由条件利用韦达定理可得sinθ+cosθ=$\frac{\sqrt{3}+1}{2}$,sinθcosθ=$\frac{m}{2}$.再根据sin2θ+cos2θ=1,求得得sinθ和cosθ 的值,可得 $\frac{si{n}^{2}θ}{sinθ-cosθ}$+$\frac{cosθ}{1-tanθ}$ 的值.
(2)由(1)结合m=2sinθcosθ,计算可求得结果.

解答 解:(1)根据sinθ,cosθ,θ∈(0,2π)是关于x的方程2x2-($\sqrt{3}$+1)x+m=0(m∈R)的两根,
可得sinθ+cosθ=$\frac{\sqrt{3}+1}{2}$,sinθcosθ=$\frac{m}{2}$.
再根据sin2θ+cos2θ=1,可得sinθ=$\frac{\sqrt{3}}{2}$,cosθ=$\frac{1}{2}$;或sinθ=$\frac{1}{2}$,cosθ=$\frac{\sqrt{3}}{2}$.
∴$\frac{si{n}^{2}θ}{sinθ-cosθ}$+$\frac{cosθ}{1-tanθ}$=$\frac{si{n}^{2}θ}{sinθ-cosθ}$+$\frac{{cos}^{2}θ}{cosθ-sinθ}$=$\frac{{cos}^{2}θ{-sin}^{2}θ}{cosθ-sinθ}$=cosθ+sinθ=$\frac{1+\sqrt{3}}{2}$.
(2)由(1)可得 m=2sinθcosθ=2×$\frac{\sqrt{3}}{2}$×$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$.

点评 本题主要考查韦达定理、三角恒等变换,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设$a={5^{0.7}},b={log_{0.3}}2,c={0.7^5}$,则a,b,c按从小到大顺序排列依次为b<c<a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a为非零常实数,e为自然对数的底数,函数f(x)=$\frac{x-2a}{ax+{a}^{2}}$的图象的对称中心为点P,函数g(x)=f(ex).(1)若a>0,当x∈[3,4]时,不等式f(x)>$\frac{1}{4}$恒成立,求a的取值范围;
(2)如果点P在第四象限,当P到坐标原点的距离最小时,是否存在实数x1,x2满足x1<0<x2,g(x1)-g(x2)=3?请说明理由;
(3)对任意n∈R,函数g(x)在区间[n,n+2]上恒有意义,且在区间[n,n+2]上的最大值、最小值分别记为M(n),m(n),当且仅当n=-1时,M(n)-m(n)取得最大值,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若a,b,c,d均为有理数,且|a-b|≤9,|c-d|≤16,|a-b-c+d|=25,求|b-a|-|d-c|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知函数f(x)=x2,求f(x-1);
(2)已知函数f(x-1)=x2,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.作出函数y=$\frac{lo{g}_{2}|x|}{x}$图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\frac{2}{x}$-x,对$?x∈[\frac{1}{3},\frac{2}{3}]$,有f(1-x)≥$\frac{a}{f(x)}$恒成立,则实数a的取值范围为(-∞,$\frac{49}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设命题p:函数f(x)=lg(x2-x+$\frac{1}{16}$a2)的定义域为R,q:?m∈[-1,1],a2-5a-3≥$\sqrt{{m}^{2}+8}$恒成立,如果命题“p∨q”为真命题,且“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知命题p:?x∈[0,$\frac{π}{2}$],cos2x+cosx-m=0为真命题,则实数m的取值范围是-1≤m≤2.

查看答案和解析>>

同步练习册答案