分析 先求出函数的定义域,然后利用复合函数的单调性确定函数f(x)的单调递减区间.
解答 解:要使函数有意义,则-x2+6x-5>0,解得x∈(1,5),
设t=-x2+6x-5,则函数在(1,3]上单调递增,在[3,5)上单调递减.
因为函数log${\;}_{\frac{1}{2}}$t在定义域上为减函数,
所以由复合函数的单调性性质可知,则此函数的单调递减区间是(1,3].
故答案为:(1,3].
点评 本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”.
科目:高中数学 来源: 题型:选择题
| A. | y=x2+1 | B. | y=-x2+1 | C. | $y=-{x^2}+1,x∈[{-\sqrt{2},\sqrt{2}}]$ | D. | y=x2+1,x∈[-$\sqrt{2}$,$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 未发病 | 发病 | 合计 | |
| 未注射疫苗 | 20 | x | A |
| 注射疫苗 | 30 | y | B |
| 合计 | 50 | 50 | 100 |
| P( K2≤K0) | 0.05 | 0.01 | 0.005 | 0.001 |
| K0 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\sqrt{2}$,$\frac{π}{4}$) | B. | ($\sqrt{2}$,$\frac{7π}{4}$) | C. | (2,$\frac{π}{4}$) | D. | (2,$\frac{3π}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20$\sqrt{91}$ m | B. | 20$\sqrt{31}$ m | C. | 500 m | D. | 60$\sqrt{66}$ m |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com