精英家教网 > 高中数学 > 题目详情
19.等比数列{an}的各项均为正数,且2a3是a2与a6的等比中项,2a1+3a2=16.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2a1+log2a2+…+log2an,求数列{$\frac{1}{{b}_{n}}$}的前n项和Sn

分析 (I)利用等比数列的通项公式即可得出.
(II)利用对数的运算性质、等差数列的求和公式可得bn,再利用“裂项求和”方法即可得出.

解答 解:(I)设等比数列{an}的公比为q>0,∵2a3是a2与a6的等比中项,2a1+3a2=16.
∴$(2{a}_{3})^{2}$=a2a6,即$(2{a}_{1}{q}^{2})^{2}$=${a}_{1}^{2}×{q}^{6}$,a1(2+3q)=16,
解得a1=q=2,
∴an=2n
(II)bn=log2a1+log2a2+…+log2an=$lo{g}_{2}(2×{2}^{2}×…×{2}^{n})$=$lo{g}_{2}{2}^{\frac{n(n+1)}{2}}$=$\frac{n(n+1)}{2}$,
∴$\frac{1}{{b}_{n}}$=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$.
∴数列{$\frac{1}{{b}_{n}}$}的前n项和Sn=2$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=2$(1-\frac{1}{n+1})$
=$\frac{2n}{n+1}$.

点评 本题考查了对数的运算性质、等比数列与等差数列的通项公式及其求和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知△ABC的三顶点分别是A(-2,2),B(1,4),C(5,-2),求它的外接圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=log${\;}_{\frac{1}{2}}$(-x2+6x-5)的单调递减区间为(1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow a$=(2sinx,cosx),$\overrightarrow b$=($\sqrt{3}$cosx,2cosx),函数f(x)=$\overrightarrow a•\overrightarrow b+m$(x∈R),其中m为常数.
(1)求函数y=f(x)的周期;
(2)如果y=f(x)的最小值为0,求m的值,并求此时f(x)的最大值及取得最大值时自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设f(x)=$\left\{\begin{array}{l}{x,x∈(-∞,a)}\\{{x}^{2},x∈[a,+∞)}\end{array}\right.$,若f(2)=4,则a的取值范围为a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,已知直线y=$\frac{1}{2}$x与双曲线y=$\frac{k}{x}$(k>0)交于A、B两点,点B坐标为(-4,-2),C为双曲线y=$\frac{k}{x}$(k>0)上一点,且在第一象限内,若△AOC面积为6,则点C坐标为(  )
A.(4,2)B.(2,3)C.(3,4)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若f(x)和g(x)都是定义在R上的函数,则“f(x)与g(x)同是奇函数”是“f(x)•g(x)是偶函数”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°.
(1)求|$\overrightarrow{a}$+2$\overrightarrow{b}$|的值;
(2)求$\overrightarrow{a}$+2$\overrightarrow{b}$在$\overrightarrow{b}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义区间[x1,x2]长度为x2-x1(x2>x1),已知函数f(x)=$\frac{{(a}^{2}+a)x-1}{{a}^{2}x}$(a∈R,a≠0)的定义域与值域都是[m,n],则区间[m,n]取最大长度时a的值是3.

查看答案和解析>>

同步练习册答案