精英家教网 > 高中数学 > 题目详情
4.如图,已知直线y=$\frac{1}{2}$x与双曲线y=$\frac{k}{x}$(k>0)交于A、B两点,点B坐标为(-4,-2),C为双曲线y=$\frac{k}{x}$(k>0)上一点,且在第一象限内,若△AOC面积为6,则点C坐标为(  )
A.(4,2)B.(2,3)C.(3,4)D.(2,4)

分析 先求出双曲线的函数解析式为y=$\frac{8}{x}$,再联立方程组求出A点的坐标,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,根据S△AOC=S△COF+S梯形ACFE-S△AOE=6,列出方程即可解决.

解答 解:∵点B(-4,-2)在双曲线y=$\frac{k}{x}$(k>0)上,
∴k=-2×(-4)=8,
∴双曲线的函数解析式为y=$\frac{8}{x}$,
联立方程组得$\left\{\begin{array}{l}{y=\frac{1}{2}x}\\{y=\frac{8}{x}}\end{array}\right.$,取x>0,解得x=4,y=2.
∴A(4,2).
过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,
∴OE=4,AE=2,
设点C的坐标为(a,$\frac{8}{a}$),则OF=a,CF=$\frac{8}{a}$,
则S△AOC=S△COF+S梯形ACFE-S△AOE
=$\frac{1}{2}$×a×$\frac{8}{a}$+$\frac{1}{2}$(2+$\frac{8}{a}$)(4-a)-$\frac{1}{2}$×4×2
=$\frac{16-{a}^{2}}{a}$,
∵△AOC的面积为6,
∴$\frac{16-{a}^{2}}{a}$=6,
整理得a2+6a-16=0,
解得a=2或-8(舍弃),
∴点C的坐标为(2,4).
故选:D.

点评 本题考查反比例函数与一次函数交点、解题的关键是熟练掌握待定系数法,学会利用分割法求四边形面积,学会用方程的思想思考问题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,
甲说:我去过的城市比乙多,但没有去过C城市;
乙说:我没有去过A城市;
丙说:我们三人去过同一城市.
由此可以判断乙去过的城市B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.圆C的极坐标方程为ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$),则圆心C的极坐标为(  )
A.($\sqrt{2}$,$\frac{π}{4}$)B.($\sqrt{2}$,$\frac{7π}{4}$)C.(2,$\frac{π}{4}$)D.(2,$\frac{3π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在由正数组成的等比数列{an}中,若a3a4a5=3π,则sin(log3a1+log3a2+…+log3a7)的值为$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.等比数列{an}的各项均为正数,且2a3是a2与a6的等比中项,2a1+3a2=16.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2a1+log2a2+…+log2an,求数列{$\frac{1}{{b}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某校高一年级学生身体素质体能测试的成绩(百分制)分布在[40,100]内,同时为了解学生爱好数学的情况,从中随机抽取了n名学生,这n名学生体能测试成绩的频率分布直方图如图所示,各分数段的“爱好数学”的人数情况如表所示.
 组数 体能成绩分组 爱好数学的人数占本组的频率 
 第一组[50,60) 100 0.5
 第二组[60,70) 195 p
 第三组[70,80) 120 0.6
 第四组[80,90) a 0.4
 第五组[90,100]30  0.3

(1)求n、p的值;
(2)用分层抽样的方法,从体能成绩在[70,90)的“爱好数学”学生中随机抽取6人参加某项活动,现从6人中随机选取2人担任领队,记体能成绩在[80,90)内领队人数为X人,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.将圆x2+y2=4每一点的横坐标保持不变,纵坐标变为原来的$\frac{1}{2}$倍,得到曲线C.
(1)写出C的参数方程;
(2)设直线l:x+2y-2=0与C的交点为P1、P2,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求:过线段P1P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知(1+ax)5 的展开式中x2的系数为40,则a=(  )
A.±1B.±2C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知单位向量使得$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为120°,点使得A(-2,0),B(0,3),若$\overline{AB}={e_1}+k{e_2}$,则k的值为(  )
A.3或4B.3或-4C.-3或4D.-3或-4

查看答案和解析>>

同步练习册答案