精英家教网 > 高中数学 > 题目详情
14.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,
甲说:我去过的城市比乙多,但没有去过C城市;
乙说:我没有去过A城市;
丙说:我们三人去过同一城市.
由此可以判断乙去过的城市B.

分析 可先由乙推出,可能去过B城市或C城市,再由甲推出只能是B,C中的一个,再由丙即可推出结论.

解答 解:由乙说:我没去过A城市,则乙可能去过B城市或C城市,
但甲说:我去过的城市比乙多,但没去过C城市,则乙只能是去过B,C中的任一个,
再由丙说:我们三人去过同一城市,
则由此可判断乙去过的城市为B.
故答案为:B

点评 本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设f(x)=lnx+ax,$g(x)=\frac{1}{2}a{x^2}-(2a+1)x$
(1)若a=1,证明:x∈[1,2]时,$f(x)-3<\frac{1}{x}$成立
(2)讨论函数y=f(x)+g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…8)数据作了初步处理,得到下面的散点图及一些统计量的值.
$\overrightarrow{x}$$\overrightarrow{y}$$\overrightarrow{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中wi=$\sqrt{{x}_{i}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(1)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})}$,$\stackrel{∧}{α}$=$\overline{v}$-$\stackrel{∧}{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),在极坐标系(以坐标原点O为极点,x轴的正半轴为极轴)中,曲线C2的方程为ρsin2θ=2pcosθ(p>0),曲线C1、C2交于A、B两点.
(Ⅰ)若p=2且定点P(0,-4),求|PA|+|PB|的值;
(Ⅱ)若|PA|,|AB|,|PB|成等比数列,求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知△ABC的三顶点分别是A(-2,2),B(1,4),C(5,-2),求它的外接圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在Rt△ABC中,∠C=90°,a=1,b=3,则cosA=(  )
A.$\frac{3\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{10}$C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线2x+2y+1=0,x+y+2=0之间的距离是(  )
A.$\frac{{3\sqrt{2}}}{4}$B.$\frac{3}{4}$C.$\sqrt{5}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)=sinxcosx-cos2(x+$\frac{π}{4}$).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f($\frac{A}{2}$)=$\frac{\sqrt{3}-1}{2}$,a=1,b+c=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,已知直线y=$\frac{1}{2}$x与双曲线y=$\frac{k}{x}$(k>0)交于A、B两点,点B坐标为(-4,-2),C为双曲线y=$\frac{k}{x}$(k>0)上一点,且在第一象限内,若△AOC面积为6,则点C坐标为(  )
A.(4,2)B.(2,3)C.(3,4)D.(2,4)

查看答案和解析>>

同步练习册答案