精英家教网 > 高中数学 > 题目详情
已知在区间上单调递减,则实数的取值范围是.

试题分析:时,是减函数,是增函数,同时须满足大于0,即,所以,
时,是减函数,是增函数,函数为增函数;
时,是增函数,是增函数,函数为减函数,同时,满足大于0,所以,
综上知,实数的取值范围是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数
(1)求证:函数上单调递增;
(2)设,若直线轴,求两点间的最短距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求的最大值;
(2)若对,总存在使得成立,求的取值范围;
(3)证明不等式:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若在区间[0,2]上恒有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数满足的导函数,已知函数的图象如图所示.若两正数满足,则的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数在区间上的最大值与最小值分别为,则          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在上的函数满足的导函数,且导函数的图象如右图所示.则不等式的解集是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在上的函数满足,且的导函数上恒有,则不等式的解集为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数y=f(x),x∈R的导函数为,且,则下列成立的是(  )
A.f(0)<e?1f(1)<e2f(2)B.e2f(2)< f(0)<e?1f(1)
C.e2f(2)<e?1f(1)<f(0)D.e?1f(1)<f(0)<e2f(2)

查看答案和解析>>

同步练习册答案