精英家教网 > 高中数学 > 题目详情
7.α、β均为钝角,且sinα=$\frac{12}{13}$,cos(β-α)=$\frac{3}{5}$,求sinβ的值.

分析 根据平方关系和角的范围求出cosα、sin(β-α),利用两角差的正弦公式求出sinβ的值.

解答 解:∵α、β均为钝角,且sinα=$\frac{12}{13}$,∴cosα=-$\sqrt{1-si{n}^{2}α}$=$-\frac{5}{13}$,
由90°<α<180°,90°<β<180°得,
-180°<-α<-90°,则-90°<β-α<90°,
∵cos(β-α)=$\frac{3}{5}$,∴sin(β-α)=$±\sqrt{1-co{s}^{2}(β-α)}$=$±\frac{4}{5}$,
当sin(β-α)=$\frac{4}{5}$时,sinβ=sin(β-α+α)=sin(β-α)cosα+cos(β-α)sinα
=$\frac{4}{5}×(-\frac{5}{13})+\frac{3}{5}×\frac{12}{13}$=$\frac{16}{65}$;
当sin(β-α)=-$\frac{4}{5}$时,sinβ=sin(β-α+α)=sin(β-α)cosα+cos(β-α)sinα
=-$\frac{4}{5}×(-\frac{5}{13})+\frac{3}{5}×\frac{12}{13}$=$\frac{56}{65}$,
sinβ的值是$\frac{16}{65}$或$\frac{56}{65}$.

点评 本题考查两角和差的正弦公式,三角函数值的符号,用已知角表示所要求的角是解决本题的关键,注意角的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.如图是一个算法流程图,则输出的T的值为14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知不等式组$\left\{\begin{array}{l}{x>0}\\{y≤1}\\{2x-2y+1≤0}\end{array}\right.$表示的平面区域为D,若直线y=-2x+a与区域D有公共点,则a的取值情况是(  )
A.有最大值2,无最小值B.有最小值2,无最大值
C.有最小值$\frac{1}{2}$,最大值2D.既无最小值,也无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某程序框图如图所示:
(1)若输出的S=57,则空白判断框内应填入的条件是k>4?;
(2)根据程序框图写出相应的程序.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.数列{an}中,其通项公式an=(a-2)•2n-1+2•3n-1,若{an}为递增数列,则a的取值范围是(  )
A.(-3,+∞)B.(-2,+∞)C.(2,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{2}$sin(ωx+φ)(ω>0,0<φ<π)为偶函数,点P,Q分别为函数y=f(x)图象上相邻的最高点和最低点,且|$\overrightarrow{PQ}$|=$\sqrt{2}$.求函数f(x)的解析式、周期、值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知射击一次甲命中目标的概率是$\frac{3}{4}$,乙命中目标的概率是$\frac{4}{5}$,现甲、乙朝目标各射击一次,目标被击中的概率是(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{9}{20}$D.$\frac{19}{20}$

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(理)试卷(解析版) 题型:解答题

阅读下列有关光线的入射与反射的两个事实现象,现象(1):光线经平面镜反射满足入射角与反射角相等(如图1);现象(2):光线从椭圆的一个焦点出发经椭圆反射后通过另一个焦点(如图2).试结合上述事实现象完成下列问题:

(1)有一椭圆型台球桌,长轴长为,短轴长为.将一放置于焦点处的桌球击出,经过球桌边缘的反射(假设球的反射完全符合现象(2)后第一次返回到该焦点时所经过的路程记为,求的值(用表示);

(2)结论:椭圆上任一点处的切线的方程为.记椭圆的方程为

①过椭圆的右准线上任一点向椭圆引切线,切点分别为,求证:直线恒过一定点;

②设点为椭圆上位于第一象限内的动点,为椭圆的左右焦点,点的内心,直线轴相交于点,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=$\left\{\begin{array}{l}{1,x∈Q}\\{0,x∈{∁}_{R}Q}\end{array}\right.$被称为狄利克雷函数,其中R为实数集,Q为有理数集,则关于函数f(x)有如下四个命题:
①函数f(x)是偶函数;
②f(f(x))=0;
③任取一个不为零的有理数T,f(x+T)=f(x)对任意的x∈R恒成立;
④不存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),
使得△ABC 为等边三角形.其中为真命题的是①③④.

查看答案和解析>>

同步练习册答案