精英家教网 > 高中数学 > 题目详情
11.计算下列各式的值:
(Ⅰ)${0.064^{-\frac{1}{3}}}-{(-\frac{7}{8})^0}+{16^{0.75}}+{0.01^{\frac{1}{2}}}$;
(Ⅱ)已知log73=a,log74=b,求log748.(其值用a,b表示)

分析 (Ⅰ)根据指数幂的运算性质计算即可,
(Ⅱ)根据对数的运算性质计算即可.

解答 解:(Ⅰ)原式=${({0.4^3})^{-\frac{1}{3}}}-1+{16^{\frac{3}{4}}}+\frac{1}{10}$=$\frac{5}{2}-1+8+\frac{1}{10}$=$\frac{48}{5}$;-----------5分
(Ⅱ)原式=log7(3×16)=log73+log716=a+2b-----------10分.

点评 本题考查了指数幂的运算性质和对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.(1)已知x>0,求f(x)=$\frac{2}{x}$+2x的最小值和取到最小值时对应x的值;
(2)已知0<x<$\frac{1}{3}$,求函数y=x(1-3x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=Asin(ωx+φ)的图象如图所示,则f($\frac{π}{4}$)的值为(  )  
A.$\sqrt{2}$B.0C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ln(x+1)+ax2-x(a∈R).
(1)若a=$\frac{1}{2}$,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)讨论函数y=f(x)的单调性;
(3)若存在x0∈[0,+∞),使f(x)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$f(x)=\left\{\begin{array}{l}(a-2)x-1,x≤1\\{a^{x-1}},x>1\end{array}\right.$若f(x)在(-∞,+∞)上单调递增,则实数a的取值范围为(2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.当$-\frac{π}{2}≤x≤π$时,函数$f(x)=sinx+\sqrt{3}cosx$的(  )
A.最大值是1,最小值是$-\sqrt{3}$B.最大值是1,最小值是-1
C.最大值是2,最小值是$-\sqrt{3}$D.最大值是2,最小值是-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.运行如图语句,则输出的结果16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知A,B,C三点不共线,O是平面ABC外任意一点,$\overrightarrow{OP}=\frac{1}{5}\overrightarrow{OA}+\frac{2}{3}λ\overrightarrow{OC}$,若P与A,B,C共面,则λ=$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图是古希腊数学家阿基米德墓碑上的图案,圆柱内有一个内切球,球的直径恰好等于圆柱的高,此时球与圆柱的体积之比为2:3.

查看答案和解析>>

同步练习册答案