精英家教网 > 高中数学 > 题目详情
13.已知复数z=1+i,则 $\frac{{{z^2}-2z}}{1-z}$=(  )
A.2iB.-2iC.2D.-2

分析 把复数z=1+i代入$\frac{{{z^2}-2z}}{1-z}$,再由复数代数形式的乘除运算化简得答案.

解答 解:由z=1+i,
得 $\frac{{{z^2}-2z}}{1-z}$=$\frac{(1+i)^{2}-2(1+i)}{1-(1+i)}$=$\frac{2}{i}=-2i$.
故选:B.

点评 本题考查了复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在四棱锥中P-ABCD,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD=$\sqrt{2}$,PA⊥PD,E,F分别为PC,BD的中点.
(Ⅰ)求证:EF||平面PAD;
(Ⅱ)求三棱锥P-CDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式|x-1|-|x+1|≥a能成立,则a的取值范围为a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数既是增函数,图象又关于原点对称的是(  )
A.y=x|x|B.y=exC.$y=-\frac{1}{x}$D.y=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\frac{1}{2}a{x^2}-(a+1)x+lnx$,$g(x)={x^2}-2bx+\frac{7}{8}$.
(1)当a<1时,求函数f(x)的单调区间;
(2)当$a=\frac{1}{4}$时,函数f(x)在(0,2]上的最大值为M,若存在x∈[1,2],使得g(x)≥M成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.要得到$y=cos(4x-\frac{π}{3})$的图象,只需将函数y=cos4x图象(  )
A.向左平移$\frac{π}{12}$个单位B.向右平移$\frac{π}{12}$个单位
C.向左平移$\frac{π}{3}$个单位D.向右平移$\frac{π}{3}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.$\int_2^3{(2x+1)dx=}$(  )
A.2B.6C.10D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线$y={x^2}+x+\frac{1}{2}$在$({0,\frac{1}{2}})$处的切线方程为(  )
A.$y=-x+\frac{1}{2}$B.$y=x+\frac{1}{2}$C.$y=-2x+\frac{1}{2}$D.$y=2x+\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设p:实数x满足(x-3a)(x-a)<0,其中a>0,q:实数x满足$\left\{\begin{array}{l}{x^2}-3x≤0\\{x^2}-x-2>0\end{array}\right.$,若p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案