精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}的前n项和为Sn.已知S2=4,an+1=2Sn+1,n∈N*

(1)求通项公式an;

(2)求数列{|an-n-2|}的前n项和.

【答案】(1);(2)

【解析】分析:(1)利用的关系可以求得通项公式

(2)设,,利用数列的性质进行求解。

详解:(1)由题意得

又当n≥2时,由an+1-an=(2Sn+1)-(2Sn-1+1)=2an,得an+1=3an,

所以数列{an}是以1为首项,公比为3的等比数列,所以an=3n-1,n∈N*

(2)设bn=|3n-1-n-2|,n∈N*,b1=2,b2=1,

当n≥3时,由于3n-1>n+2,故bn=3n-1-n-2,n≥3,

设数列{bn}的前n项和为Tn,则T1=2,T2=3,

当n≥3时,Tn=3+,当n=2时,也适合上式.所以Tn=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数{an}满a1=0,an+1=an+2n,那a2016的值是(  )
A.2014×2015
B.2015×2016
C.2014×2016
D.2015×2015

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高二学生小严利用暑假参加社会实践,为了帮助贸易公司的购物网站优化今年国庆节期间的营销策略,他对去年10月1日当天在该网站消费且消费金额不超过1000元的1000名(女性800名,男性200名)网购者,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表(消费金额单位:元):

女性消费情况:

消费金额

(0,200)

[200,400)

[400,600)

[600,800)

[800,1000)

人数

5

10

15

男性消费情况:

消费金额

(0,200)

[200,400)

[400,600)

[600,800)

[800,1000)

人数

2

3

10

2

(1)现从抽取的100名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的这两名网购者恰好是一男一女的概率;

(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”

女性

男性

总计

网购达人

非网购达人

总计

附:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,的部分图象如图所示.

)求函数的解析式;

)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足:在区间上均有定义;函数在区间上至少有一个零点,则称上具有关系W.

,判断上是否具有关系W,并说明理由;

上具有关系W,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某二手车交易市场对某型号的二手汽车的使用年数与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

售价

16

13

9.5

7

4.5

(1)试求关于的回归直线方程:(参考公式:, .)

(2)已知每辆该型号汽车的收购价格为万元,根据(1)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位: ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布

(1)假设生产状态正常,记表示一天内抽取的16个零件中其尺寸在之外的零件数,求的数学期望;

(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,其中

抽取的第个零件的尺寸,

用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计(精确到0.01).

附:若随机变量服从正态分布,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=x﹣aex(a∈R),x∈R,已知函数y=f(x)有两个零点x1 , x2 , 且x1<x2
(1)求a的取值范围;
(2)证明: 随着a的减小而增大;
(3)证明x1+x2随着a的减小而增大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次函数,分别从集合中随机取一个数得到数对

1)若,求函数有零点的概率;

2)若 ,求函数在区间上是增函数的概率.

查看答案和解析>>

同步练习册答案