精英家教网 > 高中数学 > 题目详情

【题目】已知数{an}满a1=0,an+1=an+2n,那a2016的值是(  )
A.2014×2015
B.2015×2016
C.2014×2016
D.2015×2015

【答案】B
【解析】解:∵an+1=an+2n,
∴an+1﹣an=2n,
∴an﹣an﹣1=2(n﹣1),
an﹣1﹣an﹣2=2(n﹣2),
an﹣2﹣an﹣3=2(n﹣3),

a2﹣a1=2,
累加得:an﹣a1=2[1+2+3+…+(n﹣1)]=2=n(n﹣1),
又∵a1=0,
∴an=n(n﹣1),
∴a2016=2016(2016﹣1)=2015×2016,
故选:B.
通过an+1=an+2n可知an﹣an﹣1=2(n﹣1),an﹣1﹣an﹣2=2(n﹣2),an﹣2﹣an﹣3=2(n﹣3),…,a2﹣a1=2,累加计算,进而可得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,则下列命题正确的是 . (填写所有正确命题的序号) ①若sinAsinB=2sin2C,则0<C<
②若a+b>2c,则0<C<
③若a4+b4=c4 . 则△ABC为锐角三角形;
④若(a+b)c<2ab,则C>

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别是a,b,c,且cosC+=1.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=+,其中a>0且a≠1。

(1)求函数的定义域;

(2)若函数有最小值而无最大值,求的单调增区间。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:这种消费品的进价为每件14元;该店月销量Q(百件)与销售价格P(元)的关系如图所示;每月需各种开支2 000.

1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;

2)企业乙只依靠该店,最早可望在几年后脱贫?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形和四边形所在的平面互相垂直,.

求证:(1) 平面

(2) 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=x﹣(a+1)lnx﹣ , 求函数h(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn . 已知a1=10,a2为整数,且Sn≤S4
(1)求{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn.已知S2=4,an+1=2Sn+1,n∈N*

(1)求通项公式an;

(2)求数列{|an-n-2|}的前n项和.

查看答案和解析>>

同步练习册答案