精英家教网 > 高中数学 > 题目详情
15.以集合U={a,b,c,d}的子集中选出两个不同的子集,需同时满足以下两个条件:(1)a,b都要选出;(2)对选出的任意两个子集A和B,必有A⊆B或B⊆A,那么共有32种不同的选法.

分析 a、b都有选出是指这两个子集AUB中含有元素a,b,而A⊆B或B⊆A;故不妨设元素少的为A,元素多的为B,则B必包含有{a,b},A为B的真子集;从而解得.

解答 解:由题意知,
不妨设元素少的为A,元素多的为B,
则B必包含有a,b;A为B的真子集,
①若B={a,b},A为B的真子集,共22-1=3种,
②B={a,b,c},A为B的真子集,共23-1=7种,
③B={a,b,d},A为B的真子集,共23-1=7种,
④B={a,b,c,d},A为B的真子集,共24-1=15种,
共有3+7+7+15=32种.
故答案为:32.

点评 本题考查了集合的化简与运算及集合子集的个数的求法,同时考查了分类讨论的思想应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知U为全集,集合A={x|x2-2x-3>0},B={x|2<x<4},那么集合B∩(∁UA)=(  )
A.{x|-1≤x≤4}B.{x|2<x≤3}C.{x|2≤x<3}D.{x|-1<x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\frac{3π}{4}$<α<π,tanα+$\frac{1}{tanα}$=-$\frac{10}{3}$.
(1)求tanα的值;
(2)求$\frac{5si{n}^{2}α+8sin\frac{α}{2}cos\frac{α}{2}+11co{s}^{2}\frac{α}{2}-8}{\sqrt{2}sin(α-\frac{π}{2})}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合M={x|$\frac{x}{4}$∈N*,且$\frac{x}{10}$∈N*},集合N={x|$\frac{x}{40}$∈Z},则(  )
A.M=NB.N⊆MC.M∪N={x|$\frac{x}{20}$∈Z}D.M∩N={x|$\frac{x}{40}$∈N*}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x>0,则函数y=$\frac{4{x}^{2}-x+1}{x}$的最小值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=2$\sqrt{3}$sinx•cosx+2cos2x+2
(1)求f(x)的最小正周期与值域;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=4,b=1,△ABC的面积为$\frac{\sqrt{3}}{2}$,求角A和边长a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若不等式x+2$\sqrt{xy}$≤a(x+y)对任意的实数x,y∈(0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数:①f(x)=$\sqrt{1-{x}^{2}}$+$\sqrt{{x}^{2}-1}$;②f(x)=x3-x;③f(x)=ln(x+$\sqrt{{x}^{2}+1}$);④f(x)=ln$\frac{1-x}{1+x}$.
其中奇函数的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列关系中表述正确的是(  )
A.0∈{x2=0}B.0∈{(0,0)}C.0∈∅D.0∈N

查看答案和解析>>

同步练习册答案