分析 (Ⅰ)根据抛物线的定义,可得1+$\frac{p}{2}$=2,求出p,即可即可求抛物线C的方程;
(Ⅱ)直线l:y=kx+1,代入抛物线方程,可得x2-4kx-4=0,利用韦达定理,分别求出面积,即可得出结论.
解答 解:(Ⅰ)∵拋物线C:x2=2py(p>0)上的一点M(m,1)到焦点F的距离为2,
∴1+$\frac{p}{2}$=2,
∴p=2,
∴抛物线C:x2=4y;
证明:(Ⅱ)设点A(x1,y1),B(x2,y2),直线l:y=kx+1,
代入抛物线方程,可得x2-4kx-4=0,
∴x1+x2=-4k,x1x2=-4,
∴y1+y2=4k2+2,y1y2=1,
∵Q(0,-1)到直线l的距离d=$\frac{2}{\sqrt{1+{k}^{2}}}$
∴S△QAB=$\frac{1}{2}$|AB|d=$\frac{1}{2}\sqrt{1+{k}^{2}}$|x1-x2|•$\frac{2}{\sqrt{1+{k}^{2}}}$=|x1-x2|.
∵|AA1|=y1+1,|BB1|=y2+1,
∴$\frac{{S_{△QAB}^2}}{{{S_{△QA{A_1}}}•{S_{QBB{\;}_1}}}}$=$\frac{|{x}_{1}-{x}_{2}{|}^{2}}{\frac{1}{2}({y}_{1}+1)|{x}_{1}|•\frac{1}{2}({y}_{2}+1)|{x}_{2}|}$=$\frac{4(16{k}^{2}+16)}{4(4{k}^{2}+4)}$=4,
∴$\frac{{S_{△QAB}^2}}{{{S_{△QA{A_1}}}•{S_{QBB{\;}_1}}}}$为定值.
点评 本题考查抛物线的定义,考查直线与抛物线的位置关系,考查三角形面积是计算,考查学生分析转化问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (1)(2)(3) | B. | (2)(3)(4) | C. | (1)(3)(4) | D. | (1)(2)(4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com