【题目】已知抛物线
的焦点为
,过抛物线上一点
作抛物线
的切线
,
交
轴于点
.
(1)判断
的形状;
(2) 若
两点在抛物线
上,点
满足
,若抛物线
上存在异于
的点
,使得经过
三点的圆与抛物线在点
处的有相同的切线,求点
的坐标.
科目:高中数学 来源: 题型:
【题目】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日
点的轨道运行.
点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,
点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:
.
设
,由于
的值很小,因此在近似计算中
,则r的近似值为
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四种说法正确的是( )
①若
和
都是定义在
上的函数,则“
与
同是奇函数”是“
是偶函数”的充要条件
②命题 “
”的否定是“
≤0”
③命题“若x=2,则
”的逆命题是“若
,则x=2”
④命题
:在
中,若
,则
;
命题
:
在第一象限是增函数;
则
为真命题
A. ①②③④ B. ①③ C. ③④ D. ③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,过
且垂直于
轴的焦点弦的弦长为
,过
的直线
交椭圆
于
,
两点,且
的周长为
.
(1)求椭圆
的方程;
(2)已知直线
,
互相垂直,直线
过
且与椭圆
交于点
,
两点,直线
过
且与椭圆
交于
,
两点.求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】养路处建造圆锥形无底仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12m,高4m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4m(高不变);二是高度增加4m(底面直径不变).
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积;
(3)哪个方案更经济些?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知甲同学每投篮一次,投进的概率均为
.
(1)求甲同学投篮4次,恰有3次投进的概率;
(2)甲同学玩一个投篮游戏,其规则如下:最多投篮6次,连续2次不中则游戏终止.设甲同学在一次游戏中投篮的次数为
,求
的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“菱草形段”第一个问题“今有菱草六百八十束,欲令‘落一形’捶(同垛)之,问底子(每层三角形边菱草束数,等价于层数)几何?”中探讨了“垛积术”中的落一形垛(“落一形”即是指顶上
束,下一层
束,再下一层
束,……,成三角锥的堆垛,故也称三角垛,如图,表示第二层开始的每层菱草束数),则本问题中三角垛底层菱草总束数为__________.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com