精英家教网 > 高中数学 > 题目详情
极坐标系下,求直线pcos(θ+
π
3
)=1与圆ρ=
2
的公共点个数.
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:把极坐标方程化为直角坐标方程,求出圆心到直线的距离,再根据此距离小于半径,可得直线和圆相交,有两个公共点.
解答: 解:pcos(θ+
π
3
)=1的普通方程为 x-
3
y-2=0,
ρ=2的普通方程为 x2+y2=4,
则圆心到直线的距离为d=
|0-0-2|
1+3
=1<2=r,
所以直线和圆相交,故有两个公共点.
点评:本题主要考查把极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,直线和圆的位置关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面为菱形,且∠ABC=60°,AB=PC=2,AP=BP=
2

(1)求证:平面PAB⊥平面ABCD
(2)求PD与平面PAB所成角正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱中ABC-A1B1C1,CA=CB,AB=AA1,∠BAA1=60°,点M和N分别为线段A1B1和CC1上的点,且A1M=2MB1,MN∥平面A1BC.求证:
(1)AB⊥A1C;
(2)CN=2NC1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ω是正实数,函数f(x)=4cosωx•sin(ωx+
π
4
)的最小正周期是π.
(Ⅰ)求ω的值;
(Ⅱ)若函数y=f(x)在区间[0,a]内有且仅有2个零点,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,点P到两点F1(0,-
3
)
,F2(0,
3
)
的距离之和等于4,动点P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设直线y=kx+1与曲线C交于A、B两点,当OA⊥OB(O为坐标原点),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,AB=AC,点P为线段AB上一点,且
AP
AB

(Ⅰ)若
CP
=
3
4
CA
+
1
4
CB
,求λ的值;
(Ⅱ)若∠A=120°,且
CP
AB
>4
AP
PB
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是圆O的直径,AB=5,PA垂直于圆O所在的平面,C是圆周上一点,AC=PA=4,求:
(1)直线PA与BC所成的角;
(2)二面角P-BC-A的大小;
(3)三棱锥A-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E、F分别是AD,AA1的中点
(1)求直线AB1和直线CC1所成的角的大小
(2)求直线AB1和直线EF所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简下列式子:C
 
0
m
C
 
k
n
+C
 
1
m
C
 
k-1
n
+C
 
2
m
C
 
k-2
n
+…+C
 
k
m
C
 
0
n
=
 
.(1≤k<m≤n,k,m,n∈N).

查看答案和解析>>

同步练习册答案