精英家教网 > 高中数学 > 题目详情

满足x2>x-1的实数x的取值范围是________.

x<0或x>1
分析:在同一直角坐标系中作出函数y=x2与y=x-1的图象,即可.
解答:在同一直角坐标系中作出函数y=x2与y=x-1的图象,

由图象知,当x<0时,满足x2>x-1
由x2=x-1解得x=1.
∴当x>1时,满足x2>x-1
综上所述,满足x2>x-1的实数x的取值范围是:x<0或x>1.
故答案为;x<0或x>1.
点评:本题考查二次函数与幂函数的性质,考查作图能力与解方程的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列几个命题
①方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0.
②函数y=
x2-1
+
1-x2
是偶函数,但不是奇函数.
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1].
④设函数y=f(x)定义域为R且满足f(x-1)=f(1-x),则函数y=f(x)的图象关于y轴对称.
⑤曲线y=|3-x2|和直线y=a(a∈R)的公共点个数是m,则m的值不可能是1.
其中正确的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

.已知a,b∈R,若关于x的方程x2-ax+b=0的实根x1和x2满足-1≤x1≤1,1≤x2≤2,则在平面直角坐标系aOb中,点(a,b)所表示的区域内的点P到曲线(a+3)2+(b-2)2=1上的点Q的距离|PQ|的最小值为(  )
A、3
2
-1
B、2
2
-1
C、3
2
+1
D、2
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
x2+2,x∈[0,1)
2-x2,x∈[-1,0)
且f(x+2)=f(x),g(x)=
2x+5
x+2
,则方程f(x)=g(x)在区间[-8,3]上的所有实根之和为
-12
-12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在I上的函数f(x)的导函数为f'(x),满足0<f'(x)<2且f'(x)≠1,常数C1是方程f(x)-x=0的实根,常数C2是方程f(x)-2x=0的实根.
(1)若对任意[a,b]⊆I,存在xo∈(a,b)使等式
f(b)-f(a)b-a
=f′(x0)
成立.证明:方程f(x)-x=0有且只有一个实根;
(2)求证:当x>c2时,总有f(x)<2x;
(3)若|x1-c1|<1,|x2-c1|<1,求证:|f(x1)-f(x2)|<4.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省南昌市莲塘一中高三(上)第一次月考数学试卷(理科)(解析版) 题型:选择题

.已知a,b∈R,若关于x的方程x2-ax+b=0的实根x1和x2满足-1≤x1≤1,1≤x2≤2,则在平面直角坐标系aOb中,点(a,b)所表示的区域内的点P到曲线(a+3)2+(b-2)2=1上的点Q的距离|PQ|的最小值为( )
A.3-1
B.2-1
C.3+1
D.2+1

查看答案和解析>>

同步练习册答案