精英家教网 > 高中数学 > 题目详情
12.将下列各数从小到大排列:log0.73,log87,0.93.1log0.73<0.93.1<log87.

分析 利用对数与指数函数的单调性可得:log0.73<0,1>log87>$lo{g}_{8}\root{5}{{8}^{4}}$=0.8,0<0.93.1<0.93=0.729.即可得出.

解答 解:∵log0.73<0,1>log87=$lo{g}_{8}\root{5}{{7}^{5}}$>$lo{g}_{8}\root{5}{{8}^{4}}$=0.8,0<0.93.1<0.93=0.729.
∴log87>0.93.1>log0.73.
故答案为:log0.73<0.93.1<log87.

点评 本题考查了对数与指数函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求满足下列条件的双曲线标准方程:
(1)a=12,焦点为F1(-13,0),F2(13,0);
(2)b=3,焦点为F1(0,-3$\sqrt{3}$),F2(0,3$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)是定义域为R的奇函数,当x<0时,f(x)=x|x-1|+1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.二次函数y=ax2+bx+c(a≠0).
当a>0时,值域为[$\frac{4ac-{b}^{2}}{4a}$,+∞);
当a<0时,值域为(-∞,$\frac{4ac-{b}^{2}}{4a}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若a,b∈R*且4a•4b=32,则3ab的最大值为$\frac{75}{16}$,当且仅当$\frac{5}{4}$时取等号.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=2x-x2共有m个零点,g(x)=2x+x2-2有n个零点,且f(x)=2x-x2的一个零点为4,则m+n=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.根据条件求值:
(1)已知lg2=a,lg3=b,求lg$\sqrt{54}$.
(2)已知logax=m,logay=n,求loga($\root{4}{a}$•$\root{3}{\frac{x}{\root{4}{y}}}$).
(3)已知lnx=2lna+3lnb-5lnc,求x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.作函数y=$\left\{\begin{array}{l}{x+2,x∈[1,3]}\\{3,x∈(-1,1)}\\{-x,x∈[-3,-1]}\end{array}\right.$的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.计算10lg3-10•ln1+${π}^{lo{g}_{π}5}$的值.

查看答案和解析>>

同步练习册答案