¼×ÒÒÁ½È˽øÐÐêþÊÖÍó±ÈÈü£¬±ÈÈü¹æÔò¹æ¶¨Èý·ÖÖÓΪһ¾Ö£¬Èý·ÖÖÓÄÚ²»·Öʤ¸ºÎªÆ½¾Ö£¬µ±ÓÐÒ»ÈË3¾Ö¾Í½áÊø±ÈÈü£¬·ñÔò¼ÌÐø½øÐУ¬¸ù¾ÝÒÔÍù¾­Ñ飬ÿÒÒ¼×ʤµÄ¸ÅÂÊΪ
1
2
£¬ÒÒʤµÄ¸ÅÂÊΪ
1
3
£¬ÇÒÿ¾Ö±ÈÈüʤ¸º»¥²»ÊÜÓ°Ï죮
£¨¢ñ£©Çó±ÈÈü4¾ÖÒÒʤµÄ¸ÅÂÊ£»
£¨¢ò£©ÇóÔÚ2¾Ö±ÈÈüÖм׵Äʤ¾ÖÊýΪ¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£»
£¨¢ó£©Èô¹æ¶¨Ó®Ò»¾ÖµÃ2·Ö£¬Æ½Ò»¾ÖµÃ1·Ö£¬ÊäÒ»¾ÖµÃ0·Ö£¬±ÈÈü½øÐÐÎå¾Ö£¬»ý·ÖÓг¬¹ý5·ÖÕß±ÈÈü½áÊø£¬·ñÔò¼ÌÐø½øÐУ¬Çó¼×µÃ7·ÖµÄ¸ÅÂÊ£®
¿¼µã£ºÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûÓë·½²î,»¥³âʼþµÄ¸ÅÂʼӷ¨¹«Ê½,Ï໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʳ˷¨¹«Ê½
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨I£©4¾ÖÒÒʤ£¬¼´4¾ÖÖÐÒÒ3ʤ£¬ÇÒµÚ4¾ÖΪʤ£¬ÓÉ´ËÄÜÇó³ö±ÈÈü4¾ÖÒÒʤµÄ¸ÅÂÊ£®
£¨II£©¦ÎÈ¡0£¬1£¬2£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
£¨¢ó£©¼×ÈôµÃ7·Ö£¬ÖÁÉÙ½øÐÐ4¾Ö»ò5¾Ö±ÈÈü£¬ÇÒ×îºóÒ»¾Ö¼×Ó®£¬ÓÉ´ËÄÜÇó³ö¼×µÃ7·ÖµÄ¸ÅÂÊ£®
½â´ð£º £¨±¾Ð¡ÌâÂú·ÖΪ10·Ö£©
½â£º£¨I£©ÓÉÒÑÖª¼×Ó®µÄ¸ÅÂÊΪ
1
2
£¬Æ½µÄ¸ÅÂÊΪ
1
6
£¬ÊäµÄ¸ÅÂÊΪ
1
3
£¬
ÓÉÒÑÖªÒÒÓ®µÄ¸ÅÂÊΪ
1
3
£¬Æ½µÄ¸ÅÂÊΪ
1
6
£¬ÊäµÄ¸ÅÂÊΪ
1
2
£¬¡­£®£¨2·Ö£©
4¾ÖÒÒʤ£¬¼´4¾ÖÖÐÒÒ3ʤ£¬ÇÒµÚ4¾ÖΪʤ
ËùÇóµÄ¸ÅÂÊΪ
C
2
3
(
1
3
)2(
1
6
)(
1
3
)
+
C
2
3
(
1
3
)2(
1
2
)(
1
3
)
=
2
27
£®¡­£¨5·Ö£©
£¨II£©¦ÎÈ¡0£¬1£¬2
P£¨¦Î=0£©=(
1
3
)2+(
1
6
)2
+C
1
2
(
1
3
)(
1
6
)
=
1
4
£¬
P£¨¦Î=1£©=
C
1
2
(
1
2
)(
1
3
)+
C
1
2
(
1
2
)(
1
6
)
=
1
2
£¬
P£¨¦Î=2£©=£¨
1
2
£©2=
1
4
£¬¡­£¨7·Ö£©
¦Î012
P
1
4
1
2
1
4
E¦Î=0¡Á
1
4
+1¡Á
1
2
+2¡Á
1
4
=1£®¡­£¨8·Ö£©
£¨¢ó£©¼×ÈôµÃ7·Ö£¬ÖÁÉÙ½øÐÐ4¾Ö»ò5¾Ö±ÈÈü£¬ÇÒ×îºóÒ»¾Ö¼×Ó®£¬
Éè±ÈÈü½øÐÐ4¾ÖʼþΪP£¨A£©£¬±ÈÈü½øÐÐ5¾ÖʼþΪP£¨B£©£¬
P£¨A£©=
C
1
3
(
1
6
)(
1
2
)2(
1
2
)=
1
16
£¬
P£¨B£©=
C
1
4
(
1
2
)(
1
6
)3(
1
2
)
+
C
1
3
(
1
3
)
C
1
4
(
1
6
)(
1
2
)2(
1
2
)=
19
216
£¬
ËùÒÔp=P£¨A£©+P£¨B£©=
65
432
£®¡­£¨10·Ö£©
µãÆÀ£º±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÏòÁ¿
a
=£¨cosx£¬1£©£¬
b
=£¨cos£¨x-
¦Ð
3
£©£¬-1£©
£¨¢ñ£©Èô
a
¡Î
b
£¬ÇóxµÄÖµ£»
£¨¢ò£©Éèf£¨x£©=
a
b
£¬x¡Ê£¨0£¬
¦Ð
2
£©£¬Çóf£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{log4an}ÊǵȲîÊýÁУ¬log4a2=
3
2
£¬a1+a3=20
£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{log4an}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼPÊÇ¡÷ABCËùÔÚÆ½ÃæÍâÒ»µã£¬PA=PB£¬CB¡ÍÆ½ÃæPAB£¬MÊÇPCµÄÖе㣬NÊÇABÉϵĵ㣬AN=3NB£®ÇóÖ¤£ºMN¡ÍAB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÊýÁÐ{an}ÖУ¬a1=
1
5
£¬an+an+1=
6
5n+1
£¨n¡ÊN+£©
£¨1£©Ö¤Ã÷£º{5nan-1}Êdz£ÊýÁУ»
£¨2£©Éèxn=£¨2n-1£©•10nan£¬Çó{xn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

µãA£¨1£¬1£©ÔÚÔ²C£ºx2+y2-x+y+m=0µÄÍⲿ£®
£¨1£©ÇóʵÊýmµÄȡֵ·¶Î§£» 
£¨2£©Èôm=-
1
4
£¬ÇÒ¹ýµãA£¨1£¬1£©µÄÖ±Ïßl±»Ô²C½ØµÃµÄÏÒ³¤Îª
2
£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ1£¬ÒÑÖªÌÝÐÎABCD£¬AB¡ÎCD£¬ÇÒCD=2AB£¬EÊÇCD±ßÉϵÄÖе㣬Ïß¶ÎAEÓëBD½»ÓÚµãF£®½«¡÷ADEÑØAE·­ÕÛµ½¡÷AD¡äEλÖã¬Á¬½ÓD¡äBºÍD¡äC£¨Èçͼ2£©£®

£¨¢ñ£©Ö±ÏßBCÉÏÊÇ·ñ´æÔÚÒ»µãG£¬Ê¹EG¡ÎÆ½ÃæBD¡äF£¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©ÈôAD=BC=AB=2£¬Æ½ÃæAD¡äE¡ÍÆ½ÃæABCE£¬ÇóÈýÀâ×¶C-BD¡äEµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ±ÈÊýÁÐ{an}Âú×ãa3-a1=3£¬a1+a2=3£®
£¨1£©ÇóÊýÁÐ{an}µÄǰ15ÏîµÄºÍS15£»
£¨2£©ÈôµÈ²îÊýÁÐ{bn}Âú×ãb1=a2£¬b3=a2+a3£¬ÇóÊýÁÐ{bn}µÄǰ10ÏîµÄºÍT10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¦ÁÊǵÚÈýÏóÏ޽ǣ¬ÇÒf£¨¦Á£©=
sin(5¦Ð-a)•cos(a+
3¦Ð
2
)•cos(¦Ð+a)
sin(a-
3¦Ð
2
)•cos(a+
¦Ð
2
)•tan(a-3¦Ð)
£®
£¨1£©»¯¼òf£¨¦Á£©£»
£¨2£©ÒÑÖªcos£¨
3¦Ð
2
-¦Á£©=
1
5
£¬Çóf£¨¦Á£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸