精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=
1
5
,an+an+1=
6
5n+1
(n∈N+
(1)证明:{5nan-1}是常数列;
(2)设xn=(2n-1)•10nan,求{xn}的前n项和Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)根据结论对递推公式进行化简,结合a1的值进行证明;
(2)由(1)求出通项an,代入xn=(2n-1)•10nan化简后,利用错位相减法求数列的和Tn
解答: (1)证明:由an+an+1=
6
5n+1
(n∈N+)得,
5n+1an+1+5n+1an=6,即5n+1an+1+5•5nan=6
5n+1an+1-1=-5•5nan+5=-5(5nan-1),
又a1=
1
5
,∴5a1-1=0,
∴{5nan-1}是常数列;
(2)解:由(1)得5nan-1=0,即an=
1
5n

∴xn=(2n-1)•10nan=xn=(2n-1)•10n
1
5n
=(2n-1)•2n
∴Tn=1×2+3×22+5×23+…+(2n-1)•2n
2Tn=1×22+3×23+5×24+…+(2n-1)•2n+1
两式相减得,-Tn=2+(22+23+24+…2n)-(2n-1)•2n+1
=
2(1-2n)
1-2
-(2n-1)•2n+1
=-(2n-2)•2n+1-2
∴Tn=(n-1)•2n+2+2.
点评:本题考查了数列递推公式的变形及化简,错位相减法求数列的和,考查了化简能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中点O为球心、BD为直径的球面交PD于点M.
(1)求证:平面ABM⊥平面PCD;
(2)求三棱锥M-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

2013年某市某区高考文科数学成绩抽样统计如下表:
(1)求出表中m、n、M、N的值,并根据表中所给数据在如图所示给出的坐标系中画出频率分布直方图;(纵坐标保留了小数点后四位小数)
分组频数频率频率/组距
[0,30)60.0060.0002
[30,60)820.0820.0027
[60,90)2560.2560.0085
[90,120)mn0.0145
[120,150]220N0.0073
合计M1
(2)若2013年北京市高考文科考生共有20000人,试估计全市文科数学成绩在90分及90分以上的人数;
(3)香港某大学对内地进行自主招生,在参加面试的学生中,有6名学生数学成绩在140分以上,其中男生有4名,要从6名学生中录取2名学生,求其中恰有1名女生被录取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,已知梯形ABCD,AB∥CD,且CD=2AB,E是CD边上的中点,线段AE与BD交于点F.将△ADE沿AE翻折到△AD′E位置,连接D′B和D′C(如图2).

(Ⅰ)若G是BC中点,求证:EG∥平面BD′F;
(Ⅱ)若AD=BC=AB=2,平面AD′E⊥平面ABCE,求三棱锥D′-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,独秀峰是川东著名风景区万源八台山的一个精致景点.它峰座凸兀,三面以沟壑与陡峭山壁阻隔.峰体雄伟挺拔险峻,北、西、南三面环山,东面空旷.峰顶一千年松傲雪挺立.为了测这千年松树高,我们选择与峰底E同一水平线的A、B为观测点,现测得AB=20米,点A对主梢C和主干底部D的仰角分别是40°、30°,点B对D的仰角是45°.求这棵千年松树高多少米(即求CD的长,结果保留整数.参考数据:sin10°=0.17,sin50°=0.8,
6
=2.4,
2
=1.4)

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两人进行掰手腕比赛,比赛规则规定三分钟为一局,三分钟内不分胜负为平局,当有一人3局就结束比赛,否则继续进行,根据以往经验,每乙甲胜的概率为
1
2
,乙胜的概率为
1
3
,且每局比赛胜负互不受影响.
(Ⅰ)求比赛4局乙胜的概率;
(Ⅱ)求在2局比赛中甲的胜局数为ξ的分布列和数学期望;
(Ⅲ)若规定赢一局得2分,平一局得1分,输一局得0分,比赛进行五局,积分有超过5分者比赛结束,否则继续进行,求甲得7分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-alnx,g(x)=-
1+a
x
,(a∈R).

(1)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(2)若在区间[1,e](e=2.718…)上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求值(1)sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
(2)
sin3(
π
2
+α)+cos3(
2
-α)
sin(3π+α)+cos(4π-α)
-sin(
2
+α)cos(
2
+α).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的方程为9x2+y2=81,求椭圆的离心率、焦点坐标和顶点坐标.

查看答案和解析>>

同步练习册答案