精英家教网 > 高中数学 > 题目详情
13.如图,圆O是△ABC的外接圆,PA垂直圆O所在的平面,PA=4,AC=2,Q是圆O上的动点,∠AQC=30°,则四棱锥P-ABQC外接球的表面积为32π.

分析 由题意,确定四边形ABQC的外接圆的直径为4,P-ABQC外接球的球心在过O点,且垂直于圆O所在平面的直线l上,在Rt△AOO′中,利用勾股定理求出R,即可求出P-ABQC外接球的表面积.

解答 解:∵AC=2,Q是圆O上的动点,∠AQC=30°,
∴四边形ABQC的外接圆的直径为4.
由题意,P-ABQC外接球的球心在过O点,且垂直于圆O所在平面的直线l上,
则l∥PA,
设球心为O′,外接圆的半径为R,故O′A=O′P=R,且OO′=$\frac{1}{2}$PA=2.
在Rt△AOO′中,R2=22+22=8,
所以P-ABQC外接球的表面积为4πR2=32π.
故答案为:32π.

点评 本题考查P-ABQC外接球的表面积,考查学生的计算能力,确定球心与半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,连接椭圆C的四个顶点所形成的四边形面积为4$\sqrt{3}$.
(1)求椭圆C的标准方程;
(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=$\frac{{k}^{2}-1}{k}$x分别与直线AM,AN交于点P,Q,记△AMN,△APQ的面积分别为S1,S2,是否存在直线l,使得$\frac{{S}_{1}}{{S}_{2}}$=$\frac{64}{65}$?若存在,求出所有直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.正四面体ABCD中,AB=CD=5,BC=AD=7,AC=BD=8,则外接球表面积为69π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=3ax2-2(a-b+1)x-b,a,b∈R,x∈[-1,1].
(1)若a=1,b=4.试求函数f(x)的值域;
(2)记|f(x)|的最大值为M,对任意的|a|≤1,|b|≤1,求M的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,⊙O的半径为6,线段AB与⊙O相交于点C、D,OB与⊙O相交于点E,AC=4,CD=3,∠BOD=∠A,则BE=(  )
A.4B.5C.6D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$|\overrightarrow a|=1$,$|\overrightarrow b|=\sqrt{3}$,$|\overrightarrow a-\overrightarrow b|=1$,则$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=e1-xcosx,a∈R.
(Ⅰ)判断函数f(x)在$(0,\frac{π}{2})$上的单调性;
(Ⅱ)证明:?x∈[-1,$\frac{1}{2}$],总有f(-x-1)+2f′(x)•cos(x+1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,点P是圆O直径AB延长线上的一点,PC切圆O于点C,直线PQ平分∠APC,分别交AC、BC于点M、N.求证:
(1)△CMN为等腰三角形;
(2)PB•CM=PC•BN.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如表提供了某厂节能降耗改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为$\widehat{y}$=0.7x+0.35,则下列结论错误的是(  )
 x 3 4 6
 y 2.5 44.5 
A.线性回归直线一定过点(4.5,3.5)
B.产品的生产能耗与产量呈正相关
C.t的取值必定是3.15
D.A产品每多生产1吨,则相应的生产能耗约增加0.7吨

查看答案和解析>>

同步练习册答案