【题目】设函数f(x)=aex+ +b(a>0).
(Ⅰ)求f(x)在[0,+∞)内的最小值;
(Ⅱ)设曲线y=f(x)在点(2,f(2))处的切线方程为y= ,求a,b的值.
【答案】解:(Ⅰ)设t=ex(t≥1),则
∴
①当a≥1时,y′≥0,∴ 在t≥1上是增函数,
∴当t=1(x=0)时,f(x)的最小值为
②当0<a<1时, ,当且仅当at=1(x=﹣lna)时,f(x)的最小值为b+2;
(Ⅱ)求导函数,可得)
∵曲线y=f(x)在点(2,f(2))处的切线方程为y= ,
∴ ,即 ,解得
【解析】(Ⅰ)设t=ex(t≥1),则 ,求出导函数 ,再进行分类讨论:①当a≥1时,y′>0, 在t≥1上是增函数;②当0<a<1时,利用基本不等式 ,当且仅当at=1(x=﹣lna)时,f(x)取得最小值;(Ⅱ)求导函数,利用曲线y=f(x)在点(2,f(2))处的切线方程为y= ,建立方程组,即可求得a,b的值.
【考点精析】认真审题,首先需要了解函数的最大(小)值与导数(求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值).
科目:高中数学 来源: 题型:
【题目】若样本的平均数是,方差是,则对样本,下列结论正确的是 ( )
A. 平均数为14,方差为5 B. 平均数为13,方差为25
C. 平均数为13,方差为5 D. 平均数为14,方差为2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的内角A,B,C所对边的长分别为a,b,c,则下列命题正确的是(写出所有正确命题的编号).
①若ab>c2 , 则C<
②若a+b>2c,则C<
③若a3+b3=c3 , 则C<
④若(a+b)c≤2ab,则C>
⑤若(a2+b2)c2≤2a2b2 , 则C> .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥P﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,PC为球O的直径,该三棱锥的体积为 , 则球O的表面积为( )
A.4π
B.8π
C.12π
D.16π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1是椭圆5x2+9y2=45的左焦点,P为椭圆上半部分任意一点,A(1,1)为椭圆内一点,则|PA|+|PF1|的最小值_______________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 , 其中a∈R.若对任意的非零实数x1 , 存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则k的取值范围为( )
A.k≤0
B.k≥8
C.0≤k≤8
D.k≤0或k≥8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一块边长为1(百米)的正方形区域ABCD.在点A处有一个可转动的探照灯,其照射角∠PAQ始终为45°(其中点P,Q分别在边BC,CD上),设BP=t.
(I)用t表示出PQ的长度,并探求△CPQ的周长l是否为定值;
(Ⅱ)设探照灯照射在正方形ABCD内部区域的面积S(平方百米),求S的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com