【题目】如图,有一块边长为1(百米)的正方形区域ABCD.在点A处有一个可转动的探照灯,其照射角∠PAQ始终为45°(其中点P,Q分别在边BC,CD上),设BP=t.
(I)用t表示出PQ的长度,并探求△CPQ的周长l是否为定值;
(Ⅱ)设探照灯照射在正方形ABCD内部区域的面积S(平方百米),求S的最大值.![]()
【答案】解:(Ⅰ)由BP=t,得CP=1﹣t,0≤t≤1,
设∠PAB=θ,
则∠DAQ=45°﹣θ,
DQ=tan(45°﹣θ)=
,CQ=1﹣
=
,
∴PQ=
=
=
,
∴l=CP+CQ+PQ=1﹣t+
+
=1﹣t+1+t=2,是定值
(Ⅱ)S=S正方形ABCD﹣S△ABP﹣S△ADQ=1×1﹣
×1×t﹣
×1×
,
=1﹣
t﹣![]()
=1﹣
t﹣
(﹣1+
),
=1+
﹣
﹣
,
=2﹣(
+
),
由于1+t>0,
则S=2﹣(
+
)≤2﹣2
=2﹣
,当且仅当
=
,即t=
﹣1时等号成立,
故探照灯照射在正方形ABCD内部区域的面积S最多为2﹣
平方百米.
【解析】(Ⅰ)由BP=t,得CP=1﹣t,0≤t≤1,设∠PAB=θ,则∠DAQ=45°﹣θ,分别求出CP,CQ,PQ即可得到求出周长l=2,问题得以解决;
(Ⅱ)根据S=S正方形ABCD﹣S△ABP﹣S△ADQ得到S=2﹣(
+
),根据基本不等式的性质即可求出S的最大值。
科目:高中数学 来源: 题型:
【题目】设函数f(x)=aex+
+b(a>0).
(Ⅰ)求f(x)在[0,+∞)内的最小值;
(Ⅱ)设曲线y=f(x)在点(2,f(2))处的切线方程为y=
,求a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}、等差数列{bn},满足a1>0,b1=a1﹣1,b2=a2 , b3=a3且数列{an}唯一.
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A(1,0,0),B(0,1,0),C(0,0,2).
(1)若
∥
,
∥
,求点D的坐标;
(2)问是否存在实数α,β,使得
=α
+β
成立?若存在,求出α,β的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正四棱柱ABCD-A1B1C1D1中,底面边长为2
,侧棱长为4,E,F分别是棱AB,BC的中点,EF∩BD=G.求证:平面B1EF⊥平面BDD1B1.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
如图1,在Rt
中,
,
.D、E分别是
上的点,且
,将
沿
折起到
的位置,使
,如图2.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)若
,求
与平面
所成角的余弦值;
(Ⅲ)当
点在何处时,
的长度最小,并求出最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A、B、C、D是函数y=sin(ωx+φ)(ω>0,0<φ<
)一个周期内的图象上的四个点,如图所示,A(﹣
, 0),B为y轴的点,C为图象上的最低点,E为该函数图象的一个对称中心,B与D关于点E对称,
在x轴方向上的投影为
.
(1)求函数f(x)的解析式及单调递减区间;
(2)将函数f(x)的图象向左平移
得到函数g(x)的图象,已知g(α)=
, α∈(﹣
, 0),求g(α+
)的值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1的参数方程为
(θ为参数),曲线C2的普通方程为
,以原点为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C1的普通方程和C2的极坐标方程;
(2)若A,B是曲线C2上的两点,且OA⊥OB,求
+
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com