精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy曲线C1的参数方程为 (θ为参数),曲线C2的普通方程为以原点为极点x轴的非负半轴为极轴建立极坐标系.

(1)求曲线C1的普通方程和C2的极坐标方程;

(2)AB是曲线C2上的两点OAOB的值.

【答案】(1) 曲线C1的普通方程为(x-1)2y2=1,曲线C2的极坐标方程为ρ2cos2θ+4ρ2sin2θ=16 (2)

【解析】

(1)消去曲线C1参数,求出曲线的普通方程,对曲线C2直接将普通方程转化为极坐标方程即可;

(2)设出A的极坐标方程,根据垂直关系求出B的极坐标,表示出,并代入利用三角函数关系式的恒等变换求值即可;

(1)曲线C1的普通方程为(x-1)2y2=1,

x2-2xy2=0,曲线C2的极坐标方程为ρ2cos2θ+4ρ2sin2θ=16(只要写出ρθ的关系式均可).

(2)曲线C2的极坐标方程为

A(ρ1θ),B

代入C2的极坐标方程得

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,有一块边长为1(百米)的正方形区域ABCD.在点A处有一个可转动的探照灯,其照射角∠PAQ始终为45°(其中点P,Q分别在边BC,CD上),设BP=t.
(I)用t表示出PQ的长度,并探求△CPQ的周长l是否为定值;
(Ⅱ)设探照灯照射在正方形ABCD内部区域的面积S(平方百米),求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%50%,可能的最大亏损分别为30%10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,过且斜率为的直线交于两点,

(1)求的方程;

(2)求过点且与的准线相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示MNG已知NG=4,当动点M满足条件sin G-sin Nsin M求动点M的轨迹方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a+b=1,对a,b∈(0,+∞),+≥|2x﹣1|﹣|x+1|恒成立,
(Ⅰ)求+的最小值;
(Ⅱ)求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)与g(x)和区间D,如果存在x0∈D,使|f(x0)﹣g(x0)|≤1,则称x0是函数f(x)与g(x)在区间D上的“友好点”.现给出两个函数:
①f(x)=x2 , g(x)=2x﹣2;② ,g(x)=x+2;
③f(x)=ex ;④f(x)=lnx,g(x)=x.
则在区间(0,+∞)上存在唯一“友好点”的是 . (填上所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,直线的参数方程为为参数),圆C的参数方程为为参数),以坐标原点O为极点,轴的非负半轴为极轴建立极坐标系.

(Ⅰ)求直线l和圆C的极坐标方程;

(Ⅱ)设直线l和圆C相交于A,B两点,求弦AB与其所对劣弧所围成的图形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x﹣2,g(x)=2x﹣5,则不等式|f(x)|+|g(x)|≤2的解集为;|f(2x)|+|g(x)|的最小值为

查看答案和解析>>

同步练习册答案