精英家教网 > 高中数学 > 题目详情
已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.
(1)求数列{bn}的通项bn
(2)设数列{an}的通项an=loga(1+)(其中a>0且a≠1),记Sn是数列{an}的前n项和,试比较Snlogabn+1的大小,并证明你的结论.
(1) bn=3n-2 (2) 当a>1时,Snlogabn+1;当0<a<1时,Snlogabn+1
(1)设数列{bn}的公差为d,由题意得 
解得b1=1,d=3,∴bn=3n-2.
(2)由bn=3n-2,知Sn=loga(1+1)+loga(1+)+…+loga(1+)
=loga[(1+1)(1+)…(1+)],logabn+1=loga.
因此要比较Snlogabn+1的大小,
可先比较(1+1)(1+)…(1+)与的大小,
n=1时,有(1+1)>
n=2时,有(1+1)(1+)>
由此推测(1+1)(1+)…(1+)>    ①
若①式成立,则由对数函数性质可判定:
a>1时,Snlogabn+1,                                ②
当0<a<1时,Snlogabn+1,                          ③
下面用数学归纳法证明①式.
(ⅰ)当n=1时,已验证①式成立.
(ⅱ)假设当n=k时(k≥1),①式成立,即:
 那么当n=k+1时,


 
这就是说①式当n=k+1时也成立.
由(ⅰ)(ⅱ)可知①式对任何正整数n都成立.
由此证得:当a>1时,Snlogabn+1;当0<a<1时,Snlogabn+1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列,且,若构成公差为的等差数列.
(1)试用表示
(2)设是满足的整数,则当时,数列中最小项是第几项?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设正项数列满足(n≥2).求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列的前项和为,已知,且

其中为常数.
(Ⅰ)求的值;
(Ⅱ)证明:数列为等差数列;
(Ⅲ)证明:不等式对任何正整数都成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设等比数列{an}的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列{lgan}的前多少项和最大?(lg2=0.3,lg3=0.4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}为等差数列,公差d≠0,由{an}中的部分项组成的数列
a,a,…,a,…为等比数列,其中b1=1,b2=5,b3=17.
(1)求数列{bn}的通项公式;
(2)记Tn=Cb1+Cb2+Cb3+…+Cbn,求.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

据2000年3月5日九届人大五次会议《政府工作报告》 “2001年国内生产总值达到95933亿元,比上年增长7 3%,”如果“十·五”期间(2001年~2005年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为_________亿元.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设单调递增函数的定义域为,且对任意的正实数x,y有:
⑴.一个各项均为正数的数列满足:其中为数列的前n项和,求数列的通项公式;
⑵.在⑴的条件下,是否存在正数M使下列不等式:

对一切成立?若存在,求出M的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

由原点向三次曲线引切线,切于不同于点的点
,再由引此曲线的切线,切于不同于的点,如此继续地作下去,……,得到点列,试回答下列问题: ⑴求; (2)求的关系式;
(3)若,求证:当为正偶数时,;当为正奇数时,.

查看答案和解析>>

同步练习册答案